Mechanics of the surf skimmer revisited
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The mechanics of the surf skimmer, fun sport at the beach, is re-examined by using fundamental
fluid mechanics. Comparison of the existing theories and consideration of the effects previously
neglected lead to the conclusion: Edge’s model is physically incorrect; Tuck and Dixon’s theory
provides physical insights into the surf skimming; there are several trade-offs in the mechanics of
the surf skimmer and these make this sport fun and challenging. © 2003 American Association of Physics

Teachers.
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INTRODUCTION

The surf skimmer is a toy used for sport at the beach. By
jumping on a floating board, a player can skim along the
water smoothly for several meters. In Ref. 1 Walker referred
to Bdge’s work?® to explain the mechanics of the surf skim-
mer. As early as the 1930s Green published a series of works
analyzing a flat plate skimming the water surface by a dis-
continuous flow model.>”> His analytical results are ex-
pressed by elliptic functions and hence convoluted. Recently
Tuck and Dixon® established a tractable method to solve
Green’s problem. The aim of this paper is to re-examine the
mechanics of the surf skimmer using these new models and
to show what constitutes a sounder basis on which to under-
stand the physics behind this fun sport.

THEORY

Review of Edge’s formulation

Figure 1 represents Edge’s model, which describes the co-
ordinate system and necessary nomenclature. A player with
mass m skims the water on a board of length [ tilted at an
angle « to the horizontal. The acceleration due to gravity is
denoted by g. The water of density p,, flows at velocity v
and depth 4 infinitely upstream and downstream from the
board; at the trailing edge the velocity and depth of the water
become v and h, respectively. The static pressure p takes
the atmospheric pressure value p at the trailing edge. The x
axis is horizontal and positive upstream, with its origin at the
trailing edge of the skimmer. The flow is assumed to be two
dimensional, incompressible and inviscid; the effect of grav-
ity on the water is neglected. The buoyancy forces upon the
player and the board are neglected. Edge” states that the con-
servation of mass flux and Bernoulli’s equation hold in the
following forms, respectively,

hv = hyv,=const (1)
and
p+3p,07=po+ 3p,v5=const. @)

By use of Egs. (1) and (2) one can estimate the pressure
difference on the board as
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Integrating Eq. (3) along a board of width w, one obtains the
vertical equilibrium condition
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Edge approximates the rational term on the right-hand side
of Eq. (3) by a truncated Taylor series so as to carry out the
integration. Integration of the rational term, however, can be
done exactly as shown above and the direct calculation leads
us to the same final result as Edge.

On the other hand, the drag is given by the difference
between the momentum of the water that is present on the
upstream and downstream ends of the board in the control
surface A in Fig. 1. This leads us to the equation for horizon-
tal motion

md—v=w(p v h—p,viho)
dr w wr om0
h
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Using Egs. (4) and (5) one reaches the final form of the
equation for horizontal motion

dU— 2 hO 6
w7 - 28T (6)

From this result Edge believes that the surf skimmer can go
farther with a longer board in shallower water. According to
Egs. (5) and (6), the drag becomes zero if h is zero. Is this
true? That is one of the questions this paper tries to answer.
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Fig. 1. Edge’s model. Side view of the skimmer passing through the water.
Note that there is recovery of water level in the far downstream of the
skimmer.

A close examination of Fig. 1 reveals the rise of the water
surface downstream of the board, but this particular flow
never exists. Let us examine the momentum fluxes over the
control surface B in Fig. 1. The gain of the momentum of the
water incoming and outgoing through this control surface is
equal to pwvgho— p,v2h and must balance with the pressure
difference. But the pressure of the water is atmospheric ev-
erywhere on the control surface B, so the following must
hold:

™)

Equation (7) states that the right-hand side of Eq. (5) is equal
to zero. If hy is not zero, then the right-hand side of Eq. (4)
is also equal to zero. The surf skimmer cannot lift up the
rider. It is obvious there is no change in the momentum of
the water, if we consider the control surfaces A and B alto-
gether. That is, there can be no drag, since no momentum is
transferred to the water.

A water flow in a channel sometimes exhibits a spontane-
ous increase in level known as a hydraulic jump. A tidal bore
is an example of the hydraulic jump. One also observes a
steady hydraulic jump at the downstream of a sluice gate but
the level at the upstream of the sluice is much higher than the
level of the hydraulic jump. The flow depicted in Fig. 1 has
the same level at the infinite upstream and downstream of the
board, but such a flow does not exist even within the realm
of theory. To account for the hydraulic jump it is necessary to
consider the effect of gravity.

puvho— pyv°h=0.

Formulation for a flat plate skimming the water surface

Figure 2 shows the coordinate system and nomenclature
for the Tuck and Dixon theory,6 which is a special case of
Green’s model.’™ The flow is again assumed to be two di-
mensional, incompressible and inviscid, and effects due to
gravity upon the flow are neglected. The board divides the
flow into the spray, flying forward with thickness & at infin-
ity, and the wake, with depth 4., infinitely far downstream.

hy
PL

S

The velocity of the spray returning upstream is found to be v
at infinity. This and the continuity of mass flux leads us to

h=ha,+ 6. (8)

The most important feature is the existence of the spray fly-
ing forward from the leading edge of the board. In Green’s
original model, the spray flies into the air at an angle. Al-
though it is not entirely realistic, the theory implies that this
spray flies infinitely far upstream into the air; the rest of this
model is sound.

Tuck and Dixon introduce the contract ratio A defined by

he
_hL’

©)

where h; denotes the height of the stagnation point. They
also assume the pressure and the horizontal velocity do not
vary vertically, that is, the flow is one dimensional. This is
justified, because the water is very shallow (1-2 cm). But the
one dimensionality does not hold in the close vicinity of the
stagnation point. The continuity of mass flux in the wake is

uLhLZUhoo
or
ur hm
Lol (10)

where u; is the velocity through the vertical section at the
stagnation point. These equations determine the relations be-
tween the variables at the stagnation point and the far down-
stream of the board.

We also need to know the relation between the variables at
the stagnation point and the far upstream of the board. This
can be done in the following manner. Applying Bernoulli’s
equation to the flow, except for the spray, we have

1 2 __ 1 2
p0+ 2PwU _pL+ 2PwU L,

or

(11)

where p; denotes the pressure in the vicinity of the stagna-
tion point. The net force (p;—pg)h; has to balance the net
momentum loss due to the spray thrown upstream, so one
obtains

Pr—Po= %Pw(vz"“i),

(pL=Po)hp=p,v*h—(~p,v28)—p,uihy . (12)
Using Eq. (11) the left-hand side of Eq. (12) becomes
w02 =up)hy . (13)

The right-hand side of Eq. (12) can be rewritten using Egs.
(8) and (10) to yield

Do Fig. 2. Tuck and Dixon’s model. Side
view of the skimmer passing through
___5______‘_79 the water. Note that a jet with thick-
ness ¢ is returning toward the far up-
A h stream of the skimmer.
v
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Equating Eq. (13) with Eq. (14), some algebra leads us to the
final result

50, (v +u)hy=2p,v°h
or

h 1+0)?

This is the relation between the depth at the stagnation point
and the depth far upstream of the board.

Another unique feature of the Tuck and Dixon analysis is
the introduction of the wetted length [,,, which is the length
between the stagnation point and the trailing edge of the
board. These quantities define the angle of attack «

hL—hoo
L,

Finally we shall derive the lift and drag acting on the surf
skimmer. The explanation given below is different from Tuck
and Dixon but the results are exactly the same.

The pressure under the board acts normal to the board.
Therefore the total pressure force R also acts normal to the
board. The component R sin « is the pressure drag, while the
component R cos « is the lift. Since the drag balances the
difference between the momentum of the water that is
present on the upstream and downstream ends of the board,
the following relation holds:

tan o=

(16)

Rsina={p,v’h—(—p,028)— p, v ho}w
=2p,v26w. (17)
Using Egs. (9), (15), (16), and (17), the lift can be written

R cos a=2p,v’éw cota

w

=2p,v*(h—h)

h—ha
h/hL_hoo/hL
— 2
R T T
1 2
=5 Pwl A(1—N\), (18)

where A is the wetted area and equal to [,w.

Tuck and Dixon® derive Eq. (18) by integrating the pres-
sure distribution, and hence they obtain the formula for the
pitching moment as well. Using their formulas Tuck and
Dixon successfully describe the hydrodynamics of a surf
skimmer by the simplest physically correct model. In the
next section we will discuss the effects that Tuck and Dixon
omitted in their model.

Implications of the bow wave

The preceding two sections reveal the importance of dis-
placing a portion of the incoming water towards somewhere
other than downstream of the board. In reality there is no
spray but instead a bow wave in the vicinity of the leading
edge.
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First we shall consider the effects of gravity upon the
spray in Fig. 2. By taking account of gravity in Bernoulli’s
equation, one can estimate the possible height that the spray
can fly up. Let A/ be this height from the water surface; one
can apply Bernoulli’s equation between the upper portion of
the incoming water in the infinite upstream at depth d from
the surface and the spray that stops flying at atmospheric
pressure to obtain '

po+ 3P0+ pLgd=potp,g(Ah+d)
or

UZ

Ah=5§.

(19)
A typical initial velocity of the surf skimmer is several
meters per second. If v=4.0m/s, then Ah=0.82m. If v
=2.0 m/s, then Ah=0.20 m. These figures are too large for
the height of the bow wave. Another difficulty in this sce-
nario is the infinite thickness of the spray at v =0 because of
the continuity of mass flux, i.e., v 4.

If the flow is completely two dimensional, the incoming
water steadily pushes the upper portion of the water upwards
and forwards. In reality the board has a finite width and the
upper portion of the water with thickness &'is also displaced
sideways rather than purely forwards. This lateral flow and
the forward flow may constitute the bow wave. To take ac-
count of three-dimensional effects properly we need to de-
velop a lifting surface theory of wings with ground effect and
free surface. Gravity and viscosity also play important roles
in forming the bow wave. To understand their roles, thorough
experiments including flow visualization are essential. These
tasks are beyond the scope of this paper.

Other factors to be considered

Since two fluid media surround the player and the surf
skimmer, both must be considered. The kinematic viscosity
of air is 15 times larger than that of water. The aerodynamic
Reynolds number for surf skimming is typically of order
10°, while the hydrodynamic Reynolds number is of order
10°.

The largest aerodynamic force is the drag acting on the
player, because a standing man is a bluff body. The frictional
drag on the board is much smaller than the human drag,
because the board is a streamlined body. Practically, one may
include the effect due to the frictional drag acting on the
board in the human drag contribution. The aerodynamic lift
forces acting on the player and the board are almost negli-
gible compared to the hydrodynamic lift, and hence the in-
duced drag due to lift is also negligible.

At the Reynolds number mentioned above the water is
almost always turbulent in uncontrolled environments like a
beach, and hence the friction drag due to the water is as large
as the pressure drag.

Since the board is aerodynamically and hydrodynamically
streamlined, the surface of the board should be smooth.

To close this section I would like to mention the possibil-
ity of lubrication by the water. Sometimes we observe that a
sheet of paper slides for a long distance across a smooth
floor. A very thin fluid layer is known to exert a normal stress
much greater than a tangential stress. This phenomenon is
accounted for by using the lubrication model of the Navier—
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Fig. 3. Major forces acting on a player and a board. Note the directions of
forces: the hydrodynamic pressure force (R); the weight (mg); the frictional
drag (F); the aerodynamic drag (D).

Stokes equations (see details in Ref. 7, for example). To as-
sure the validity of this model two conditions must be satis-
fied.

Let € be h. /1, . Then one condition of lubrication model
states

e<l. (20)

In case of the surf skimmer e is at most of order 1072, and
hence Eq. (20) holds.

Since the lubrication model is valid for laminar flow, an-
other condition is

Re <1, (21)
where
vl
Re= —=%
VW

and v, denotes the kinematic viscosity of water. If v is as
slow as 1.0 m/s, then Re is of order 10°. To satisfy Eq. (21)
it is necessary that the trailing-edge height 4., should be less
than 0.1 mm. Therefore we should not expect lubrication in
the mechanics of the surf skimmer.

RESULTS AND DISCUSSION
Equations of motion

We shall derive the basic equations to describe the dynam-
ics of the surf skimmer treated as a point mass. Figure 3
shows the major resultant forces acting on the player and the
board. We assume there is no wind at the beach.

First we derive a vertical equilibrium condition. To sim-
plify our analysis we shall estimate orders of related quanti-
ties and neglect less important ones. The largest known
quantity is the player’s weight, which we shall use as a mea-
sure of order estimation. The depth of the water /4 is typically
several centimeters, so the vertical acceleration of the player
and the board is much smaller than g and hence negligible.
We neglect the buoyancy force on the board, or we assume
that the weight of the board cancels out with the buoyancy
force. The component due to the viscous friction is also neg-
ligible, because the angle of attack of the board is typically
several degrees. Therefore the vertical equilibrium condition
gives

mg=R cos a. (22)

If we use Eq. (18) as the explicit expression for the lift, we
have

mg=13p,v2A(1—X\). (23)
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According to Eq. (23), it is necessary to make A(1—X\)
larger, as v becomes smaller: to stay afloat it is necessary to
skim a great deal of water, as the velocity becomes smaller.
There is, however, an upper bound for the thickness of the
water, i.e., 6<h. When the board hits the bottom of the
water, A becomes zero. Then the skimmer stops just after the
velocity reaches the terminal value v, given by

2mg
v,—\/p T (24)

w

This is equivalent to the lower bound of the velocity found
by Tuck and Dixon.°

Next we derive the equation for horizontal motion, where
we have three drag forces. The pressure drag R sin a can be
rewritten using Eq. (22) to be

R sin a=mg tan a. (25)
The hydrodynamic friction F' is given by
F=1p,v?A cr, (26)

where ¢ is the skin friction coefficient.
The aerodynamic drag D is given by

D=1p,v%8,Cp, (27)

where p,,, Sy, and Cp denote the air density, the frontal area
of the player, and the drag coefficient, respectively. Using
Egs. (25), (26), (27), and Newton’s second law of motion, we
obtain

dv 1 ) 1 )
mg-=—mg tana—ipwv Acfcosa—zpav SuCp, (28)
or divided by m
dv 1 ) 1 )
a=—gtana—ﬁpwv Acfcosa—%pav SuCp, (29)

where ¢ denotes time.

The first term on the right-hand side of Eq. (29) is the
physically correct expression of the right-hand side of Edge’s
Eq. (6).

Since no thrust acts on the surf skimmer as shown in Eq.
(29), to ride the skimmer for a long distance it is necessary to
reduce the drag forces in the following ways.

(1) To reduce the pressure drag it is necessary to keep the
angle of attack as small as possible, but to be afloat it is
necessary to tilt the board.

(2) To reduce the skin friction it is necessary to use a board
with a hydrodynamically smooth lower surface, because
as the velocity decreases a large area will be wetted.

(3) To reduce the aerodynamic drag it is necessary for the
player to take a low posture.

Numerical results

To examine some quantitative aspects of the present analy-
sis we derive the formula for the traveling distance of the
surf skimmer. To integrate Eq. (29) we need further assump-
tions and estimates of parameters. The angle of attack is
assumed to be kept constant. The skin friction coefficient is
treated as a constant, i.e., 0.005. The aerodynamic drag co-
efficient is assumed to be 1.3. This value is insensitive to
Reynolds number, because the player is a bluff body. The
wetted area should be found as part of the solution. To solve
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the nonlinear problem as a whole set, one has to solve equa-
tions numerically. The aim of the present analysis is to obtain
physical insights into the surf skimmer. We shall solve the
problem approximately but analytically: we replace the wet-
ted area A by the board area S . By the assumptions above,
we are led to lower bounds for the terminal velocity v, and
the traveling distance. In this case Eq. (24) is reduced to

2mg

o prB. <30)
Equation (29) becomes

dv 1 ) 1 5

a8 PV S 5 Pt SyCp . 31

If we let.s be the traveling distance of the surf skimmer, then
the following holds:

dv  dv -

ar Vs (32)
By replacing the left-hand side of Eq. (31) with the right-
hand side of Eq. (32), one can integrate the differential equa-
tion by separation of variables. The constant of integration
can be determined by the initial conditions v(0)=v, and
5(0)=0 at t=0. One then obtains the total traveling dis-
tance, s,, given by

St:S|v=v,

m

- PwSBCr+PaSHCp

mga+(p,Spcs+ paSHCD)vé/Z‘

n mga+(pWSBcf-+paSHCD)vIZ/2|' (33)

Let us examine the validity of Egs. (30) and (33) by com-
paring the theoretical results with the experiment conducted
by Edge. His son played on a surf skimmer on the beach.
Edge took measurements in the field as well as analyzed 8
mm film. The details of the experimental data are the follow-
ing: m=29 kg, [=0.71 m, initial velocity=2.7 m/s, terminal
velocity=0.45 m/s, traveling distance=49m, a=1.9
degrees, initial height of the trailing edge=5.1 cm, and ter-
minal height of the trailing edge=2.5 cm.

There is no data about the frontal area S, so we assume
a 1.4 m tall and 30 cm wide boy. Densities are taken to be
p,=1025 kg/m® and p,=1.225 kg/m°.

Equation (30) gives

v,= 1.2 m/s,
and using this estimate for v,, Eq. (33) yields
s;=5.7 m.

In principle Eqgs. (30) and (33) should afford satisfactory
results, although they are possibly simplistic. The relation
between the terminal velocity and the traveling distance in
the experiment contradicts the theoretical results. There are
lots of unknown factors, winds, waves and so on, to be con-
sidered as possible causes of this discrepancy.

The next example is to show the relation between the ini-
tial velocity vy and the total traveling distance s,. The as-
sumed values are the following: m=70kg, Sp=1.8
X0.4m? Sp=(0.5)%7 m? and a=2 degrees. This situa-
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Fig. 4. Relations between initial velocity and total traveling distance. Com-
parison between the adult player and the child player with the same board.

tion is that of a 1.8 m tall adult who skims the water with a
circular board (1 m in diameter). We also calculate the case
of a child: m=29kg, S,;=14X0.3m? with the same
board.

By Eq. (30) one finds v,=1.31 m/s for the adult, and v,
=0.84 m/s for the child. Substituting this v, value into Eq.
(33) we obtain the relation between v, and s, as shown in
Fig. 4. The heavier adult must start skimming at a faster
initial velocity, while the lighter child can skim the water
with a slower initial velocity.

Tuck and Dixon® state that the surf skimmer can travel for
5-10 m in 1-2 cm deep water and carry the player at speeds
around 2—-4 m/s. This statement is in fairly good agreement
with the numerical results shown in Fig. 4. Our formulas
should give the lower bound for v, and s,, because we re-
placed A by Sp and adopted larger values for ¢, and Cp. It
happened that overestimation balanced the neglected effects
like the wave drag, the induced drag, and so on. This is an
easy reason for the good agreement between the present
simple formulas and the field observations, but another rea-
son is closely related to the mechanics of the surf skimmer.

Figure 5 shows the relation between three drag forces and
the velocity calculated using the same parameters as in Fig.
4. The largest drag is the pressure drag unless v is greater
than around 3.5 m/s for the adult and 2.2 m/s for the child.
The lift on the board must be equal to the player’s weight.
Therefore the pressure drag must be in proportion to the
player’s weight and does not depend on the velocity. During

50
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Fig. 5. Relation between various drag forces and the velocity. Comparison
between the adult player and the child player with the same board.
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most of the skimming time the pressure drag is the largest
retarding force. This is another reason why the simplest for-
mulas work well.

Figure 5 also explains the difference in the total traveling
distance between the adult and the child. The pressure drag
and the aerodynamic drag are dependent on the body weight
and size, but the hydrodynamic friction is independent of the
player. Therefore at higher speeds the friction becomes the
major retarding force, and this situation works to the heavier
adult’s advantage.

Concluding remarks

We re-examined the mechanics of the surf skimmer by
comparing the Edge and Tuck and Dixon models and con-
sidering several effects disregarded by these authors.

Edge’s conclusion is found to be drawn from his physi-
cally incorrect model. It is not true that the surf skimmer can
go farther with a longer board in shallower water.

One feature of surf skimming is concealed in the pressure
drag. Since the lift has to be equal to the player’s weight, the
pressure drag becomes independent of the velocity. The pres-
sure drag is a major retarding force in the usual operating
range of the velocity.

There are several trade-offs in the mechanics of the surf

skimmer.

(1) The angle of attack should be as small as possible to
reduce the pressure drag, but the angle has to be nonzero
to be afloat.

(2) The wetted area must become larger for the slower ve-
locity, but the skin friction increases in proportion to the
increasing wetted area.

(3) The player should take a posture as low as possible to
reduce the aerodynamic drag, but the player has to keep
balance and control the board.

These trade-offs make this sport fun and challenging.
By using Tuck and Dixon’s model we derive the formulas
that give the lower bounds for the terminal velocity v, and
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the total traveling distance s,, i.e., Egs. (30) and (33). These
formulas agree fairly well with the field observations.

Lubrication is found to be unimportant for the mechanics
of the surf skimmer. There remain several questions to be
answered in the future.

(1) The existence of the bow wave cannot be explained by
the two-dimensional inviscid theory. To take account of
lateral flow and wake it is necessary to develop a lifting
surface theory. To account for the formation of the bow
wave and the wake structure it is also necessary to con-
sider the effects due to viscosity and gravity.

(2) To understand dynamics of surf skimming it is necessary
to formulate the entire system as an interaction problem
of rigid bodies, i.e., the player and the board, and sur-
rounding flows.

In addition, well-controlled experiments are essential to
understanding the physics behind the surf skimmer.
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