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This is the first report of complex bifurcation and manyfold hysteresis phenomena in the physics
behind a pair of sails set in a flow of two dimensions. The formalism is based on inviscid vorticity
theory, and the basic equations consist of a pair of integro-differential equations subject to a pair of
nonlinear integral constraints. The method of solution is built up with the boundary element method
for the integro-differential equations as well as the Newton–Raphson method for parameter search
by use of the nonlinear integral constraints. Three types of configurations are considered as case
studies on effects due to overlapping of the jib sail upon the main sail. Numerical analyses predict
three sets of solutions: The convex-convex sail shapes, the concave-convex sail shapes, and the
concave-concave sail shapes as well as two- or threefold hysteresis in aerodynamic and structural
characteristics. Experimental observations confirm the existence of all the three solution sets, and
moreover another set, the convex-concave sail shapes, is found by the experiment. The three case
studies show that too much overlap of sails fails to obtain high lift. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2818229�

I. INTRODUCTION

In most cases the flow field is determined by the geom-
etry of the boundaries. But if the boundaries are compliant,
flow-structure interactions take place and yield complex phe-
nomena. Aerodynamics of sails is a typical example of the
flow-structure interactions. We know that even the single sail
problem is complex enough owing to many experimental,
theoretical, and numerical works done so far. The present
work provides a clue to multiple sail problems and shows the
discovery of the bifurcation phenomena as a result of nu-
merical prediction and experimental observations.

First, we shall very briefly review a study in a two-
dimensional sail. Nonlinearity in sail-flow interactions yields
hysteresis in aerodynamic and structural characteristics, be-
cause two equilibria exist within a certain range in the angle
of attack: one has a bow-like camber and another has an
S-shaped camber. An inviscid theory for an inextensible sail
was first developed by Voelz1 and then rediscovered by
Thwaites2 and Nielsen3 independently. Several experiments
were later carried out and compared with the inviscid
theory.4–6 The inviscid theory agrees fairly well with experi-
ments insofar as experimental conditions fit to small-
disturbance assumption. In the case of a single sail problem,
bifurcation and hysteresis is well summarized by Murai and
Maruyama.7 Last efforts are concentrated on the develop-
ment of viscous theories.8,9

There are practical needs for theories of three-
dimensional sails to predict aerodynamic and structural char-
acteristics of sails for yachts, hang gliders, and so on. Jack-
son and Christie10 propose a general lifting surface theory for
an elastic sail. In the special case of a circular elastic mem-
brane in a flow11 two equilibria are found in both the theory

and the experiment. Lifting line theories are also available
for elastic sails12–14 and inextensible sails.15,16

There are very few papers that handle the interactions
among a pair of flexible sails and a flow,17,18 because it is
difficult to find physically meaningful sets of tensions acting
on a pair of structurally independent sails in a flow.

Myall and Berger17 actually looked for the solution in
which the suction force at the leading edge vanishes as the
title of their paper shows. In their eigenvalue problem the
tensions and sail shapes in equilibrium are found as the ei-
genvalues and the corresponding eigenvectors. That is why
they treated this case only. It should be noted that these situ-
ations occur essentially at zero angle of attack in the case of
the special configurations of sails.

Jackson18 introduced an iteration to the formalism and
solved the sail-sail-flow problem to show the usefulness of
the iterative process. The result shows a single equilibrium at
each angle of attack.

Thus far, the former studies describe restricted, not glo-
bal, behavior of aerodynamic and structural interactions
among a pair of sails and a flow. Hence there are few clues to
the existence of multiple equilibria in the sail-sail-flow inter-
actions. Our knowledge is quite limited with respect to inter-
actions among a pair of flexible sails and a flow, even if it is
two-dimensional and inviscid. Before going into a complex
practical world, it is worthy for us to consider simpler but
fundamental case studies.

We shall formulate the two-dimensional problem about
the interactions among a pair of sails and a flow around
them. As mentioned above, it is crucial to break the difficulty
of determining forces acting on structurally independent
sails. To do this, we explore the parameter space spanned by
tensions acting on sails by a systematic search, i.e., the
Newton–Raphson method. To obtain free mobility in this pa-a�Electronic mail: take@is.kanagawa-u.ac.jp.
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rameter space and at the same time to ease the computational
loads of the search, we sacrifice a part of reality by introduc-
ing the inviscid flow theory. This strategy is essentially in-
dispensable to invent the numerical scheme, because we are
led to the tractable formalism that consists of a pair of linear
integro-differential equations associated with a pair of non-
linear constraints on sail lengths. To solve the integro-
differential equations, we make use of the boundary element
method. As a result of our numerical analysis we discover
the complex bifurcation phenomena in the sail-sail-flow in-
teractions, which we verify qualitatively by conducting ex-
periments to observe the phenomena.

The present paper consists of five sections starting from
this introduction; in Sec. II is the theory where the basic
equations are derived and the method of solution is ex-
plained; in Sec. III is a detailed description of the experi-
ments; in Sec. IV the numerical results as well as the obser-
vations in the experiments are discussed and annotated; Sec.
V is the summary of our findings.

II. THEORY

A. Basic equations

To handle the sail-sail-flow interactions is on the line of
practical needs to understand the behaviors of jib and main
sails in action.

Figure 1 shows the coordinate system and the notations
to be used in our study. The flow is approximated as incom-
pressible and inviscid. This assumption is justified, partly
because typical Reynolds numbers of phenomena are of the
order of 107 for sailing craft, and partly because the aim of
the spanning jib sails is to prevent flow separation over the
main sail. Adding that, the former studies4–6 show the good
agreement between the inviscid thin-wing theory and the ex-
periments for such small camber sails that we consider here.

The uniform flow with its velocity U approaches the
sails at the angle � to the x axis. We denote � as the angle of
attack. We nondimensionalize every quantity by use of c, the
chord length of the main sail, and U.

Two sails are fixed and freely rotated at the leading and
trailing edges; the leading edge of a sail is called the luff,
while the trailing edge of a sail is called the leach. The luff
and leech of the main sail are located upon the x axis, while
the luff and leech of the jib sail are located upon the � coor-
dinate. The origin of the � coordinate and �, the angle be-
tween the � and x coordinates, are set to reflect the actual
situation of the jib and main sails: �1� The luff of the jib sail
is just on the center line of a sailing craft; �2� the leech of the
jib sail root is fixed to the starboard side of the craft, i.e., the
right side. The parameter a is the ratio of the jib chord-length
to that of the main sail. The origin of the � coordinate is
located at the point �x ,y�= �−b , 0�.

Sails are treated as inextensible, impervious, and infini-
tesimally thin materials. Deformation of the sails takes place
due to slackness of the sails. We take sj and sm coordinates
along the arcs of the jib and main sails, respectively. The
angle of the slope to the x axis, designated by �, is measured
positive in a counterclockwise direction. Since the sails are
set upright, we can neglect the effect due to gravity.

Since we are interested in upwind sails, � is a small
angle. The angle � is small as well, because sailing craft are
very narrow. We also insist that aerodynamic disturbances
due to the sails are small. In due course we will neglect the
higher order effects due to these small disturbances, i.e., �,
the bound vorticities on the sails. Now we shall derive the
basic equations from the flow tangency condition and the
mechanical equilibrium between the aerodynamic pressure
and tensions.

A control point is defined as the point where the bound-
ary condition is to be satisfied; a source point is the location
of the vorticity; r and � denote, respectively, the distance
between the control and source points and the relative angle
between them measured in the same sense of �.

As Biot-Savart’s law gives the velocity induced by the
vorticity as � /2�r, we have the boundary condition, i.e., the
flow tangency condition; the slope of the boundary is equal
to the ratio of the y-component of the velocity, v, to the
x-component, u. Hence we have
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In the last approximation we neglected the higher-than-third-
order terms of small disturbances.

Moreover we approximate measurements of � and r be-
tween a source point and a field point by using the points
projected from the arc sj or sm upon the � or x coordinate,
respectively. Therefore the first integral on the right-hand
side of Eq. �1� shall be taken along the � coordinate, while
the second integral shall be along the x axis. This is the

FIG. 1. The coordinate system and the notations. The formalism utilizes the
Cartesian coordinate �x ,y� with �-axis along the jib sail with its origin at
�b ,0� and tilted at the angle � to the x-axis; all the lengths are normalized by
use of the chord length of the main sail, while the velocity is normalized by
use of the uniform flow; the angle of attack � is defined as the main sail; the
upper inset shows the tension CTi

and the pressure difference 
Cp acting on
a sail element of length dsi and slope angle �.
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thin-wing approximation, which disregards the second-order
error in cos � /r in Eq. �1�; that term is multiplied by �;
therefore the error becomes the third order, and hence we
consistently retain the second order accuracy in Eq. �1� by
the thin-wing approximation.

The inset of Fig. 1 shows the mechanical boundary con-
dition, i.e., the equilibrium between the tension and aerody-
namic pressure acting on a sail element. The nondimensional
tension coefficient is designated by CTi where the subscript i
denotes either j or m for the jib or main sail, respectively.
The pressure difference coefficient is designated by 
CP.

In the normal plane to the sail element the equilibrium is
expressed by


CP = − CTi
d�

dsi
, �2�

and in the tangent plane of the sail element by

dCTi

dsi
= 0. �3�

Equation �3� shows that each tension is constant along the
corresponding arc.

On the other hand the linearized Bernoulli’s theorem
leads us to the relation between the pressure difference and
the bound vorticity on surfaces of the sails �see Ref. 19, p.
114, for example�,


CP � 2� , �4�

and hence Eq. �2� becomes

2� = − CTi
d�

dsi
. �5�

Here we should note that 
CP for the infinitesimally thin
wings does not contain the second-order perturbation �see
Ref. 20, pp. 151-156, for example�. Now we shall introduce
deviation angles, � j for the jib sail and �m for the main sail,
such that

� = �� + � j for the jib sail,

�m for the main sail.
� �6�

First of all we shall recall

� � 1 and � � 1.

Since slackness of each sail is small enough,

� j � 1 and �m � 1.

Therefore we have

tan � � �� + � j for the jib sail,

�m for the main sail,
� �7�

and

d�

dsi
= 	

d� j

dsj

for the jib sail,

d�m

dsm

for the main sail.
 �8�

After eliminating � from Eq. �1� by use of Eq. �5�, and then
substituting Eqs. �7� and �8� for Eq. �1�, we arrive at

� j +
CTj

4�
�

0

a d� j

dsj

cos �

r
d� +

CTm

4�
�

0

1 d�m

dsm

cos �

r
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�9�

for the jib sail, and

�m +
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4�
�

0

a d� j

dsj

cos �

r
d� +
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4�
�

0

1 d�m

dsm

cos �

r
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for the main sail. Further noting

d� j

dsj
�

d� j

d�
and

d�m

dsm
�

d�m

d	
,

we are lead to a pair of the integro-differential equations in
terms of unknowns � j and �m,

� j��� +  j�
0

a d� j

d�
k��,��d� + m�

0

1 d�m

d	
k��,	�d	 = � − �

�11�

and

�m�x� +  j�
0

a d� j

d�
k�x,��d� + m�

0

1 d�m

d	
k�x,	�d	 = � ,

�12�

where

i =
CTi

4�

and

k�pc,ps� =
cos �

r
.

In the kernel function the indices pc and ps denote the loca-
tions of the control and source points, respectively.

Equations �11� and �12� become homogeneous if and
only if both � and � become zero. But � is never zero, and
hence we do not need to consider the eigenvalue problem.

There are nonlinear constraints on slackness of each sail.
Suppose the total arc lengths of the sails are lj and lm, then
we define slackness parameters as follows:

SRj =
lj − a

a
for the jib sail, �13�

and

SRm = lm − 1 for the main sail. �14�

We reduce the constraints on slackness as follows:
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SRj =
�0

ljdsj − a

a
=

�0
ad�/cos � j − a

a
�

1

2a
�

0

a

� j
2d� �15�

for the jib sail and in the very same manner

SRm �
1

2
�

0

1

�m
2 dx �16�

for the main sail.
Now we have two unknown functions, � j and �m, and

two unknown parameters, CTj
and CTm

, for a pair of integro-
differential equations �11� and �12�, subject to a pair of func-
tional constraints, �15� and �16�. Therefore our problem is
appropriately formulated. Thus we formulate the problem by
consistently retaining the second-order accuracy.

Equations �11� and �12� can be rewritten as a pair of
Fredholm equations of the second kind. This implies that the
existence of the solution is assured by the relevant general
argument �see Ref. 21, pp. 49-80, for example�.

B. Method of solution

Figure 2 shows the schema of the solution method.
Given the parameters �, �, SRj, and SRm, we first solve the
integro-differential equations �11� and �12� subject to the ini-
tial guess of CTj

and CTm
. Then we calculate the slackness

parameters and renew the tensions if necessary. We shall
repeat this iteration until we obtain the convergent solution
set. To solve the integro-differential equations we use the
boundary element method, in particular the vortex lattice
method. To renew the tensions we make use of the Newton–
Raphson method.

All I want to obtain is a tool to know if multiple equi-
libria exist subject to given geometry. In this respect I shall
comment on the most important point in this numerical
scheme. There is no iteration in finding the shapes, � j and �m,
subject to given �, �, CTj

and CTm
. Just one calculation leads

us to the solution. This becomes possible, because we intro-
duce the thin-wing approximation. Our formalism, however,
retains the second-order nonlinearity, in particular as slack-
ness.

To search for the solution in the vast parameter space of
��,CTj

, CTm
�, we make the most of our knowledge on the

single-sail and flow interactions1–7 at the large angles of at-
tack there exists the unique solution set, while near the zero
angle of attack there exits multiple solution sets. We start our
calculation at �=20° with an arbitrary initial guess of CTj

,
CTm

, and the sail shapes; the calculation quickly converges to
the solution that becomes the basis of the initial guess at �
slightly smaller than 20°; by making the angle of attack
gradually smaller, we obtain one solution set consisting of
the convex jib and convex main configuration mentioned in
Sec. IV. Then we restart our calculation at �=−20°, and the
above-mentioned procedure leads us to another solution set
consisting of the concave jib and convex main configuration
or the concave jib and concave main configuration men-
tioned in Sec. IV. Finally at �=0 we try some more search
by use of the initial guess that consists of the concave jib and
convex main configuration or the convex jib and concave
main configuration. In some cases this search leads us to the
third solution set. The search process is pretty sensitive to the
initial sail shapes and less sensitive to the initial guess of CTj
and CTm

.
We divide the jib and main sails into Nj and Nm panels,

respectively. In our numerical analysis Nj =Nm=40. To obtain
the curvature, however, it is necessary to use Nj +1 and Nm

+1 slope data of the jib and main sails, respectively. We
adopt the slope data at nodes, i.e., �� jk

k=0,1,. . .,Nj
for the jib

sail and ��mn
n=0,1,. . .,Nm

for the main sail. The vortex lattice
method adopts constant length panels, a quarter point of each
panel for a source point, and three quarters point of each
panel for a control point. This configuration of control and
source points is known to lead us to the very accurate results
�see for example, Ref. 19, pp. 264–265�. Therefore we have
the slope of the kth panel at three quarters point as follows:

�̃ik
=

3�ik
+ �ik−1

4
, �17�

where �̃ik
and �ik

denote the slope at the control point and that
at the edge of the kth panel, respectively.

At the source points we need the curvature instead of the
vorticity because of Eq. �5�. This can be done in the same
manner above,

d�̃ jk

d�
�

� jk
− � jk−1

hj
,

�18�
d�̃mk

d	
�

�mk
− �mk−1

hm
,

where hj and hm denote the panel lengths of the jib and main
sails, respectively.

By discretizing Eqs. �11� and �12�, we have

�̃ j��i� +  j�
k=1

Nj d�̃ j

d�
k��i,�k�hj + m�

l=1

Nm d�̃m

d	
k��i,	l�hm = � − �

�19�

for i=1,2 , . . . ,Nj and

FIG. 2. The schema of the solution method. The method consists of the
boundary element method to find the shapes of sails and the Newton–
Raphson method to determine the tensions.
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�̃m�xn� +  j�
k=1

Nj d�̃ j

d�
k�xn,�k�hj + m�

l=1

Nm d�̃m

d	
k�xn,	l�hm = �

�20�

for n=1,2 , . . . ,Nm.
Substituting Eqs. �17� and �18� for Eqs. �19� and �20�,

we obtain the final form of the equations to be solved,

3

4
� ji

+
1

4
� ji−1

+  j�
k=1

Nj

�� jk
− � jk−1

�k��i,�k�

+ m�
l=1

Nm

��ml
− �ml−1

�k��i,	l� = � − � �21�

for i=1,2 , . . . ,Nj and

3

4
�mn

+
1

4
�mn−1

+  j�
k=1

Nj

�� jk
− � jk−1

�k�xn,�k�

+ m�
l=1

Nm

��ml
− �ml−1

�k�xn,	l� = � �22�

for n=1,2 , . . . ,Nm.
In this way we get Nj +Nm linear simultaneous equations,

but the number of the unknowns is Nj +Nm+2.
To get two more equations we shall introduce the iden-

tities on the conditions that the sails are fixed at the leading
and trailing edges,

�
0

a

tan � jd� = 0,

and

�
0

1

tan �mdx = 0.

The left-hand sides of the identities above are approximately
equal to

�
0

a

� jd�

and

�
0

1

�mdx ,

respectively. Carrying out integration by use of the trapezoi-
dal rule with given panels, we obtain the two additional
equations for unknowns,

� j0
+ 2 �

k=1

Nj−1

� jk
+ � jNj

= 0 �23�

and

�m0
+ 2 �

n=1

Nm−1

�mn
+ �mNm

= 0. �24�

A set of Eqs. �21�–�24� are linear in terms of the unknowns
�� jk

k=0,1,. . .,Nj
and ��mn

n=0,1,. . .,Nm
, and hence it is easy to solve

subject to given CTj and CTm.
Thus the rest of the problem solving is how to renew the

tensions toward the convergent solution. For this purpose we
shall determine the tensions to fulfill the functional con-
straints on slackness of the sails, i.e., Eqs. �15� and �16�. First
we discretize these functionals. Suppose �i changes linearly
over the kth panel from �ik−1

to �ik
,

�i�si� = �ik−1
�1 −

si

hi
� + �ik

si

hi
,

then integration of �i
2 over this panel yields the results,

hi

3
��ik−1

2 + �ik−1
�ik

+ �ik
2 � .

Therefore we obtain the quadrature necessary for calculating
the slackness parameters,

�
0

a

� j
2d� �

hj

3 �
k=1

Nl

�� jk−1

2 + � jk−1
� jk

+ � jk
2 � �25�

and

�
0

1

�m
2 dx �

hm

3 �
n=1

Nm

��mn−1

2 + �mn−1
�mn

+ �mn

2 � . �26�

Using Eqs. �15�, �16�, �25�, and �26�, we shall define the
implicit functions in terms of CTj and CTm by

Fj�CTj,CTm� =
def hj

6a
�
k=1

Nl

�� jk−1

2 + � jk−1
� jk

+ � jk
2 � − SRj �27�

and

Fm�CTj,CTm� =
defhm

6 �
n=1

Nm

��mn−1

2 + �mn−1
�mn

+ �mn

2 � − SRm.

�28�

Then we shall look for CTj
* and CTm

* that satisfy the con-
straints on the slackness,

� Fj�CTj
* ,CTm

* �

Fm�CTj
* ,CTm

* �
� = �0

0
� . �29�

We find the solution set by use of the Newton–Raphson
method, i.e.,
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�CTj
*

CTm
* � = �CTj

CTm

�
−�

�Fj

�CTj

�Fj

�CTm

�Fm

�CTj

�Fm

�CTm

�
−1

� Fj�CTj,CTm�

Fm�CTj,CTm�
� , �30�

where the left-hand sides are the new estimate of the ten-
sions. To calculate the right-hand sides of Eq. �30�, we need
the derivatives of the functionals, which we shall approxi-
mate by use of the following finite differences:

�Fj

�CTj
�

Fj�CTj + 
,CTm� − Fj�CTj − 
,CTm�

2

,

�Fj

�CTm
�

Fj�CTj,CTm + 
� − Fj�CTj,CTm − 
�

2

,

�Fm

�CTj
�

Fm�CTj + 
,CTm� − Fm�CTj − 
,CTm�

2

,

�Fm

�CTm
�

Fm�CTj,CTm + 
� − Fm�CTj,CTm − 
�

2

,

where we take 
=10−9 for our numerical analysis. In every
iteration we need to calculate five sets of �Fj ,Fm, but this
process leads us very quickly to the convergent solution
without much computing time.

To check the convergence, we impose the seven
significant-digit accuracy upon the relative errors between
the new and old values of the tensions.

Once we get the convergent solution set, i.e.,
�� jk

k=0,1,. . .,Nj
, ��mn

n=0,1,. . .,Nm
, CTj and CTm, then we estimate

the aerodynamic characteristics in the following. The role of
the jib sail is the same as a flap. To see how much lift is
enhanced by use of the jib sail, we define the lift coefficient
based on the chord length of the main sail alone,

Cl = 2�
0

lj

�dsj + 2�
0

lm

�dsm

= − CTj�
0

lj d� j

dsj
dsj − CTm�

0

lm d�m

dsm
dsm

= − CTj�� j�lj� − � j�0�� − CTm��m�lm� − �m�0��

= CTj�� j0
− � jNj

� + CTm��m0
− �mNm

� . �31�

The nose-up moment coefficient around the mast is defined
by

Cm = 2�
0

a

��b cos � − ��d� − 2�
0

1

�xdx

= − CTj�
0

a d�l

dsj
�b cos � − ��d� + CTm�

0

1 d�m

dsm
xdx

� − CTj�
0

a d�l

d�
�b − ��d� + CTm�

0

1 d�m

dx
xdx

� − CTj�
k=1

Nj � jk
− � jk−1

hj
�b − hj�k −

1

2
��hj + CTm�

n=1

Nm �mn
− �mn−1

hm
�hm�n −

1

2
��hm

= − CTj�
k=1

Nj

�� jk
− � jk−1

��b − hj�k −
1

2
�� + CTm�

n=1

Nm

��mn
− �mn−1

�hm�n −
1

2
� .

III. EXPERIMENTAL SETUP

We conduct experiments to observe small models in a
small test bed and to confirm that the theoretical prediction is
not spurious.

The apparatus we own is Air Flow Bench AF10 manu-
factured by TecQuipment. Figure 3�a� shows its appearance.
This test bed provides air flow with the speed up to 30 m /s
into the tiny test section: the section is 5.0 cm wide, 10 cm
high, and 40 cm long in a streamwise direction; the observa-

tion window has circular panes with 9.5 cm diameter. The
airway in the test bed is not fully closed, but wind circulates
in the system. The test section is connected to the open end
of the convergent air way down the settling chamber on top
of the system.

We measure the in-process velocity by the Pitot static
tube connected to the piezoelectric anemometer.

We prepare the three types of setup that correspond to
the case studies provided by the numerical analysis; the

122102-6 Takeshi Sugimoto Phys. Fluids 19, 122102 �2007�

Downloaded 09 Dec 2007 to 61.204.235.6. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



chord lengths of sail used are 3.0 cm, 4.5 cm, and 6.0 cm,
while the spans of all the models are the same 5.0 cm; as a
sail material we make use of transparencies for presentation;
at the edges the sail sheets are fixed to steel rods of 1.5 mm
diameter; within the test section sail models are sandwiched
by a pair of circular observation panes by allowing the rods
to penetrate panes through holes bored there; thus the sail
models are set to rotate freely at the edges. By rotating the
circular panes little by little, we change the angle of attack.
Figure 3�b� shows the test section with a circular observation
window.

First we set the model at �=20°, and then we switch on
the fan; by decreasing � by 1° at a time, we observe the
model and take pictures at every angle of attack; we repeat
this procedure until �=−20°; then we stop the fan.

Next we set the model at �=−20°, and then we switch
on the fan; by increasing � by one degree at a time, we
observe the model and take pictures at every angle of attack;
we repeat this procedure until �=20°; then we stop the fan.

IV. RESULTS AND DISCUSSION

A. Case studies of sail-sail-flow interactions:
Numerical analysis

The problem has so many parameters, i.e., a, b, �, SRj,
and SRm, that analyses, discussion, and annotation tend to be
diverse. The present work confines our interest in the way
that overlap affects aerodynamic and structural characteris-
tics. We prepare one configuration for the largely overlap-
ping case and two for the less overlapping cases. In the less
overlapping cases, the x coordinate value of the trailing edge
of the jib sail is smaller than the x coordinate value of the
leading edge of the main sail. The fixed parameters are the
slackness parameters, which are set to be 0.01 for both the
sails. With this magnitude of the slackness parameter, the
inviscid theory is known to agree fairly well with experi-
ments in case of a single sail �see, for example, Refs. 4–6�.
In reality, slackness depends on the sailor’s way of making

sail, and it takes the value from the order of 0.01 to 0.1.18

Before we go into detail of our new results, we summa-
rize the bifurcation and hysteresis in single-sail phenomena.7

The aerodynamic characteristics are odd functions of the
angle of attack, while the tension is an even function of the
angle of attack; at small angles of attack there are several
equilibria, among which at least two are possible. This mul-
tiple existence of equilibria leads to hysteresis depending on
the time history. At the zero angle of attack the formalism
becomes the eigenvalue problem, which can be interpreted as
“buckling in the air.”

In the case of sail-sail-flow interactions there is no sym-
metry or asymmetry with respect to the angle of attack; the
formalism does not pose the eigenvalue problem. But we
interpret the phenomena as “buckling in the air.” Now we
shall see what happens to a pair of sails in a flow.

1. Case of largely overlapping sails from the theory

In this case the parameters are set in the following:
a=1.0; b=−0.5; �=10°. Figures 4–6 show the results.

As shown in Fig. 4�a�, the aerodynamic characteristics
exhibit hysteresis because of the existence of bistability at

FIG. 3. Experimental apparatus and sail models in the test section. �a� The
upright test bed: Wind blows from top to bottom; a centrifugal fan is located
under the table; the duct behind the table is for supply air to the settling
chamber on top of the system. �b� The test section: Circular parts house the
model sails made of sheets of transparencies supported by steel rods at the
both edges; circular panes are clamped to the test section and rotated to
change the angle of attack.

FIG. 4. Aerodynamic and structural characteristics of two sails with SRj

=SRm=0.01, a=1.0, b=−0.5, and �=10° from the theory. �a� Cl vs �; �b�
Cm vs �; �c� CTj

,CTm
vs �; the transition from the convex-convex set to the

concave-convex set occurs at �=7.6°, while the transition from the concave-
convex set to the convex-convex set occurs at �=13.8°.
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�� �7.6,13.8� by the degree. The convex-convex set denotes
the solution set starting from the solution uniquely conver-
gent at �=20° and consisting of the solutions obtained by
changing � smaller little by little: A pair of convex sails
appears. The concave-convex set denotes the solution set
starting from the solution uniquely convergent at �=−20°
and consisting of the solutions obtained by changing � larger
little by little: A concave jib sail and a convex main sail
appear. The convex-convex set does not exist at ��7.6°,
while the concave-convex set exists at ��13.8° only. We
shall see the details in Figs. 5 and 6.

As shown in Fig. 4�b�, hysteresis is also found in the
moment. The nose-up moment about the mast, i.e., the lead-
ing edge of the main sail, is always negative. Although the
jib sail yields the positive moment, the main sail contributes
to generating the larger negative moment. The effective
angle of attack for the jib sail is �−�. Hence the moment
becomes more negative as the angle of attack decreases. The
moment decreases more and more as the angle of attack de-
creases in the concave-convex set. This is because even the
jib sail yields the negative moment.

As shown in Fig. 4�c�, the tensions exhibit hysteresis of
a butterfly-type. The tension of the jib sail decreases more
rapidly than that of the main sail. This is because the jib
becomes loose as �−� approaches zero. The tension of the
jib sail increases against decreasing �, while the tension of
the main sail decreases against decreasing �. The major rea-

son for these tendencies of tensions is attributed to the con-
figuration of two sails. If the angle of attack is smaller than
10°, incoming flow approaches toward the jib sail first. Then
the jib sail induces the flow field where air flows along the
jib sail and the main sail is always in there. Thus against
decreasing � the jib becomes tight and the main sail becomes
loose at the same time.

As shown in Figs. 5�a� and 5�b�, in the convex-convex
set, both sails have camber lines curved upward and develop
a positive lift. That means the jib sail works as a flap as
expected. But the enhancement of lift is not twice as large as
lift of the single sail. One of the reasons is that the main sail
cannot generate much lift, as it is placed on the pressure side
of the jib sail. This can be known by the vorticity distribu-
tion. Another reason lies in the rear part of the jib sail, which
is slightly curved downward. This is due to the suction force
in the vicinity of the main sail. The slightly inflected camber
line of the jib sail develops negative vorticity in the vicinity
of its trailing edge.

Figures 6�a� and 6�b� show shapes and vorticity distribu-
tions of the concave-convex set. In this set the jib and main
sails get close together. If we blow air between two sheets of
paper held parallel, then these sheets are sucked by low pres-
sure in between. The same phenomenon occurs in the
concave-convex set. This set exists at ��13.8° and even at
�=−30°. Lift of the concave-convex set is always smaller
than that of the convex-convex set insofar as both solutions
coexist at �� �7.7,13.8� by the degree. The jib sail has cam-
ber lines curved downward and hence lift is almost always
negative. Moreover even the suction force at the leading

FIG. 5. Shapes in equilibrium and corresponding vorticity distributions of
two sails with SRj =SRm=0.01, a=1.0, b=−0.5, and �=10°: The convex-
convex set from the theory �a� convex-convex shapes of two sails at various
angles of attack larger than or equal to 7.7°; �b� corresponding vorticity
distributions.

FIG. 6. Shapes in equilibrium and corresponding vorticity distributions of
two sails with SRj =SRm=0.01, a=1.0, b=−0.5, and �=10°: The concave-
convex set from the theory �a� concave-convex shapes of two sails at vari-
ous angles of attack less than or equal to 13.8°; �b� corresponding vorticity
distributions.
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edge becomes negative at the negative angle of attack. This
means the stagnation point is located at the upper surface of
the sail.

In summary, we find two solution sets and hence hyster-
esis in aerodynamic and structural characteristics. With re-
spect to the evaluation of overlapping, it is less advantageous
that we overlap two sails too much as the configurations
mentioned here. In such a case the enhancement of lift due to
addition of the jib sail is not so large, and two sails are prone
to get close together. Therefore it is not recommended to use
the same-size jib and main sails close together; if we do so,
the use is confined at the angle of attack larger than 15°.

2. Case of less overlapping sails: A small jib sail
from the theory

This is the case that a smaller jib sail with a=0.5 is set at
b=−0.5 and �=10°. Figures 7 and 8 show the results. Since
we concentrate our consideration for understanding bifurca-
tion and hysteresis, we put aside less illustrative vorticity

distributions, Cm-� and CTi
-� curves in the consecutive sub-

sections on numerical analysis on the cases of less overlap-
ping sails.

Figure 7�a� shows the Cl-� curve, which exhibits two-
fold hysteresis. In this case we find another solution set, i.e.,
the concave-concave set. Interestingly numerical calculation
transits from the convex-convex set at �=−0.36° to the
concave-concave set at �=−0.37° very smoothly. It is appro-
priate to consider these solution sets before and after �
=−0.36° constitute the physically meaningful one set of so-
lutions. Since we find this transition, we hunt for another
solution around this discontinuity to find the concave-convex
set as a result. This set exists at �� �−3.4,1.5� by the degree.
Quantity of lift is in the following order: the concave-
concave set; the concave-convex set; the convex-convex set.
The lift of the convex-convex set is large enough compared
to the largely overlapping sails mentioned in the previous
subsection, although added sail area is half of that for the
largely overlapping sails. Therefore it is recommended to use
the half-size jib and full-size main sails for enhancing the lift
in almost all the range of the positive angle of attack. Such a
jib sail acts as “a leading-edge flap.”

Figure 7�b� shows the sail shapes for the convex-convex
and concave-concave sets. At the high angle of attack both
sails have camber lines curved upward; around �=0° the jib
sail exhibits inflected camber line but the main sail holds
almost the same shape as that at the high angle of attack;
at �=−0.36° the jib sail has an S-camber but with still
positive lift, while the main sail stays almost the same; at
�=−0.37° the jib and main sails become curved downward
at the same time and both the sails stay almost the same
against � decreasing.

Figure 7�c� shows the sail shapes for the concave-convex
set. This set of solutions exists only at �� �−3.4,1.5� by the
degree. If decreasing � causes reversal of camber of the jib

FIG. 7. Aerodynamic characteristics and shapes in equilibrium for the two
sails with SRj =SRm=0.01, a=0.5, b=−0.5, and �=10° from the theory. �a�
Cl vs �; �b� convex-convex and concave-concave shapes of two sails at
various angles of attack, among which the transition occurs at � in between
−0.37° and −0.36°; and �c� concave-convex shapes of two sails at various
angles of attack in �−3.4,1.5� by the degrees.

FIG. 8. Bifurcation diagram: The solution sets in the three parameter space
for the two sails with SRj =SRm=0.01, a=0.5, b=−0.5, and �=10° from the
theory. The solid lines show the three solution sets in �CTm

,CTj
,�� space.
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sail slightly earlier in timing than that of the main sail at the
discontinuous point, i.e., �=−0.36°, the convex-convex set
transits to the concave-convex set. Once the channel between
two sails is formed, low pressure sucks two sails. In this
configuration the jib sail is tight, while in the wake of the jib
sail the main sail is loose. At �=−3.4° reversal of camber of
the main sail occurs, and the concave-convex set transits to
the concave-concave set. Similarly at �=1.5° reversal of
camber of the jib sail occurs, and the concave-convex set
transits to the convex-convex set. Thus hysteresis becomes
twofold.

Figure 8 is the bifurcation diagram for the present prob-
lem showing the solution sets as thick solid curves in
�CTm

,CTj
,�� space, where � is measured by the degree. We

see three curves do not intersect one another in this param-
eter space. The convex-convex set lies between �1.65,0.48,
−0.36° � and �3.85, 3.74, 20°�; the concave-convex set lies
between �1.56,1.35,−3.44° � and �2.09, 0.57, 1.53°�; the
concave-concave set lies between �2.33,3.28,−10° � and
�1.38,1.68,−0.37° �. In the concave-convex set �CTm

,CTj
�

= �1.88,0.85� around �=−0.36°. In any cases sails become
loose near �=−0.36°, and hence the transition takes place
around this angle of attack. The Newton–Raphson method
drives the search toward the solution in the constant � plane
in this �CTm

,CTj
,�� space. In this particular case we may

encounter two solutions in the constant � plane.

3. Case of less overlapping sails: A large jib sail
from the theory

This is the case that a jib sail with a=1.0 is set more
upstream at b=−1.0 and �=5.0°. Figure 9 shows the results
of the numerical analysis.

Figure 9�a� shows the Cl-� curve. The phenomena are
quite similar to those annotated in the previous subsection.
While the convex-convex set and the concave-concave
set exist complimentarily at all � calculated in between
±20°, the concave-convex set coexists with the other set at
�� �−14.1,1.5� by the degree. The transition between the
convex-convex set and the concave-concave set takes place
at �=−1.9°. Spanning the jib sail generates one and a half
times larger lift than the main sail alone, if ��−1.9°. This
type of large jib sail, however, changes the characteristics of
the nose-up moment, �Cm /�� is negative for the single sail,
�Cm /�� is positive for a pair of sails, and the large jib is
located ahead of the mast. Therefore we have to change the
way of controlling the direction of a sailing craft, if we span
such a large jib sail.

As shown in Fig. 9�b� at ��−1.9° both the sails have
camber lines curved upward, while at ��−1.9° both the
sails have camber lines curved downward. The jib sail as-
sumes the S-camber at �=−1.9°, which implies the tension is
small. When the tensions become small, the transition be-
tween the convex-convex set and the concave-concave set
occurs.

Figure 9�c� shows the shapes of the concave-convex set,
in which two sails get close together. This set yields larger
lift than the convex-convex set at ��−1.9°, because the

main sail holds the camber curved upward. Reversal of the
camber of the main sail occurs at �=−14.1°, if we decrease
the angle of attack further; then the concave-concave set ap-
pears. Reversal of the camber of the jib sail occurs at �
=1.5°, if we increase the angle of attack further; then the
convex-convex set appears.

Comparing the result of largely overlapping sails, we
conclude as follows: The same-size jib and main sails should
be laid out as staggered and no overlapping, then the lift is
greatly enhanced in almost all the range of the positive angle
of attack. This is summarized as the “double main-sail
effect.”

FIG. 9. Aerodynamic characteristics and shapes in equilibrium for the two
sails with SRj =SRm=0.01, a=1.0, b=−1.0, and �=5.0° from the theory. �a�
Cl vs �; �b� convex-convex and concave-concave shapes of two sails at
various angles of attack, among which the transition occurs at �=−1.9°; and
�c� concave-convex shapes of two sails at various angles of attack in
�−14.1,1.5� by the degrees.

122102-10 Takeshi Sugimoto Phys. Fluids 19, 122102 �2007�

Downloaded 09 Dec 2007 to 61.204.235.6. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



B. Case studies of sail-sail-flow interactions:
Experimental observations

Motivated by the prediction about complex bifurcation
and hysteresis phenomena in sail-sail-flow interactions due
to our numerical analysis, we prepare experiments to see if
the prediction is true or spurious. Experimental conditions
are as follows: The air speeds range from 20 to 22 m /s; the
resulting Reynolds number defined by the chord length of the
main sail is 7.8–8.3�104.

In the following figures all the pictures are rearranged to
fit to the coordinate system defined by Fig. 1: The uniform
flow comes from the left of the pictures; if the leading edge
of the main sail is lifted upward, its angle of attack is posi-
tive, and vice versa. Line drawings adjacent to photos show
the counterparts from the theory. Their angles of attack are
the same as the experiments unless otherwise labeled differ-
ently.

1. Case of largely overlapping sails
from the experiments

Figure 10 shows the schematic summary of the experi-
mental counterparts for the case of largely overlapping sails;
the parameters are set in the following: a=1.0, b=−0.5, �
=10°.

At �=20° we observe the convex-convex set as shown
in Fig. 10�a�, which stably exists until �=3.0° as shown in
Fig. 10�b�. At �=2.0°, reversal of camber in the jib sail
occurs, and the concave-convex set appears until �=−20°.
We observe occasional benign flatter in the concave-convex
set at �� �−11,−2.0� by the degree, while the concave-
convex sails cease to flatter at �� �−20,−12� by the degree.
Therefore the concave-convex set is not intrinsically un-
stable.

We restart the experiments at �=−20° as shown in Fig.
10�c�, and there is the concave-convex set. This set exists up

to �=6.0°; at ��−14° we occasionally observe benign flat-
ter. As shown in Fig. 10�d�, the jib sail assumes S-camber at
�=6.0°. At �=7.0° reversal of camber in the jib occurs, and
the convex-convex set appears until �=20°.

In the experiments the transition from the convex-
convex set to the concave-convex set occurs at � in between
2.0° and 3.0°, while this transition is predicted by the theory
to occur at �=7.6°. In the experiments the transition from
the concave-convex set to the convex-convex set occurs at �
in between 6.0° and 7.0°, while this transition is predicted by
the theory to occur at �=13.8°.

The theory succeeds in predicting what kind of phenom-
ena occurs. Theoretical shapes in equilibrium are in good
agreement with those observed in the experiments, but there
are some discrepancies in the angles of attack.

2. Case of less overlapping sails: A small jib sail
from the experiments

Figure 11 shows the schematic summary of the experi-
mental counterparts for the case of less overlapping sails
with a small jib sail; the parameters are set in the following:
a=0.5 is set at b=−0.5 and �=10°.

At �=20° we observe the convex-convex set as shown
in Fig. 11�a�, which stably exists until �=−1.0° as shown in
Fig. 11�b�. At �=−2.0°, reversal of camber in the jib sail
occurs, and the concave-convex set appears until �=−8.0°.
No noticeable flatter occurs in this concave-convex set. At
�=−9.0°, reversal of camber in the main sail occurs, and the
concave-concave set appears until �=−20°.

We restart the experiments at �=−20° as shown in Fig.
11�c�, and there is the concave-concave set. This set exists
until �=−6.0° as shown in Fig. 11�d�. At �=−5.0°, reversal
of camber in the main sail occurs, and the concave-convex

FIG. 10. Shapes in equilibrium observed in the experiments for the two sails
with SRj =SRm=0.01, a=1.0, b=−0.5, and �=10°. �a� The convex-convex
shape at �=20°; �b� the convex-convex shape at �=3.0°; �c� the concave-
convex shape at �=−20°; �d� the concave-convex shape at �=6.0°; line
drawings adjacent to photos show the counterparts from the theory; their
angles of attack are the same as the experiments unless otherwise labeled
differently; the transition from the convex-convex set to the concave-convex
set is predicted by the theory to occur at �=7.6°, while the transition from
the concave-convex set the convex-convex set at �=13.8°.

FIG. 11. Shapes in equilibrium observed in the experiments for the two sails
with SRj =SRm=0.01, a=0.5, b=−0.5, and �=10°. �a� The convex-convex
shape at �=20°; �b� the convex-convex shape at �=−1.0°; �c� the concave-
concave shape at �=−20°; �d� the concave-concave shape at �=−6.0°; �e�
the concave-convex shape at �=1.0°; line drawings adjacent to photos show
the counterparts from the theory at the same angles of attack as the experi-
ments; the convex-convex set and the concave-concave set are predicted by
the theory to exist complementary to � in between −0.37° and −0.36°, while
the concave-convex set is predicted by the theory to exist at � in
�−3.4,1.5� by the degrees.
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set appears until �=4.0° as shown in Fig. 11�e�. At �=5.0°,
reversal of camber in the jib sail occurs, and the convex-
convex set appears until �=20°.

In the experiments the transition from the convex-
convex set to the concave-convex set occurs at � in between
−2.0° and −1.0°, while this transition is predicted by the
theory to occur at � in between −0.37° and −0.36°. In the
experiments the transition from the concave-concave set to
the concave-convex set occurs at � in between −6.0° and
−5.0°, while this transition is predicted by the theory to oc-
cur at � in between −0.37° and −0.36°. In the experiments
we observe the concave-convex set at � in �−8.0,4.0�, by the
degrees, while the theory predicts the existence of the
concave-convex set at � in �−3.4,1.5� by the degrees. The
experimental results suggest the concave-convex set may be
more stable than other equilibria at small angles of attack.
This is because the strong channel flow exists between sails
and this low-pressure flow sucks both the sails.

Thus the theory succeeds to predict what kind of phe-
nomena occurs. Theoretical shapes in equilibrium are in
good agreement with those observed in the experiments, but
there are some discrepancies in transition angles.

3. Case of less overlapping sails: A large jib sail
from the experiments

Figure 12 shows the schematic summary of the experi-
mental counterparts for the case of less overlapping sails
with a large jib sail; the parameters are set in the following:
a=1.0 is set more upstream at b=−1.0 and �=5.0°.

At �=20° we observe the convex-convex set as shown
in Fig. 12�a�, which stably exists until �=−2.0°. At
�
=−3.0° reversal of camber in the jib sail occurs, and the

concave-convex set appears until �=−10°. No noticeable
flatter occurs in this concave-convex set. The sample shape
at �=−9.0° is shown in Fig. 12�b�. At �=−11.0° reversal of
camber in the main sail occurs, and the concave-concave set
appears until �=−20°.

We restart the experiments at �=−20° as shown in Fig.
12�c�, and there is the concave-concave set. This set exists
until �=3.0°. At �=4.0°, reversal of camber in the jib oc-
curs, and the convex-concave set appears until �=10°. As
shown in Fig. 12�e� this convex-concave set is found by
experiments only. At �=11° reversal of camber in the main
sail occurs, and the convex-convex set appears until �=20°.

In the experiments the transition from the convex-
convex set to the concave-convex set occurs at � in between
−3.0° and −2.0°, while this transition is predicted by the
theory to occur at �=−1.9°. In the experiments the transition
from the concave-convex set to the concave-concave set oc-
curs at � in between −11.0° and −10.0°, while this transition
is predicted by the theory to occur at �=−14.5°. In the ex-
periments we observe the unexpected transition from the
concave-concave set to the convex-concave set at � in be-
tween 3.0° and 4.0°. With this almost-no-overlap layout of
sails there are a few chances for the formation of channel
flow between the sails.

Thus the theory succeeds to predict what kind of phe-
nomena occurs. Theoretical shapes in equilibrium are in
good agreement with those observed in the experiments, but
there are minor discrepancies in transition angles.

After the experiments we search for the convex-concave
set by the simulations, but so far we could not find this
particular set by our numerical analysis. The most plausible
reason for the alibi lies on the point that we neglect the effect
of gravity, because gravity pulls the sail to the right in these
pictures.

V. CONCLUSIONS

We summarize our findings as follows:

�1� As a representation of sail-sail-flow interactions, we in-
troduce the tractable formalism consisting of a pair of
integro-differential equations, equivalent to Fredholm
equations of the second kind, subject to a pair of non-
linear integral constraints.

�2� To solve the basic equations subject to the constraints
and boundary conditions, we invent the method of solu-
tion consisting of the vortex lattice method and the
Newton–Raphson method, which captures multiple so-
lutions for sail-sail-flow interactions; these are the
convex-convex set, the concave-convex set, and the
concave-concave set.

�3� We discover the complex bifurcation and manyfold hys-
teresis phenomena in sail-sail-flow interactions predicted
by the numerical analysis and verified qualitatively by
the experimental observations; another equilibrium, the
convex-concave set, is found by the experiments only.

�4� We evaluate how overlap of a jib sail upon a main sail
affects, and find too much overlap of sails fails to obtain

FIG. 12. Shapes in equilibrium observed in the experiments for the two sails
with SRj =SRm=0.01, a=1.0, b=−1.0, and �=5.0°. �a� The convex-convex
shape at �=20°; �b� the concave-convex shape at �=−9.0°; �c� the concave-
concave shape at �=−20°; �d� the convex-concave shape at �=6.0°; line
drawings adjacent to photos show the counterparts from the theory at the
same angles of attack as the experiments; the convex-convex set and the
concave-concave set are predicted by the theory to exist complementary to
�=−1.9°, while the concave-convex set is predicted by the theory to exist at
� in �−14.1,1.5� by the degrees.
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high lift. This is because the concave-convex set comes
to existence due to the possible channel-flow formation
between overlapping sails.

Everything has just started, so there are a lot of things to
do. The following are the main menu of the future chal-
lenges: we should study stability of equilibria; we should
consider neglected effects, e.g., mass of sails, viscosity, and
so forth; we should extend the formalism and the method of
solution to three-dimensional problems; we should look for
the optimum configuration of two sails in the line of the
present formalism; thorough quantitative experiments are of
course necessary.
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