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A Spherical Horse Broadens Our Horizons of Study
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The spheres are the ultimate 3D toy models. Although the spheres are often treated as purely theoretical entities
without real-world practicality, the spheres serve as hatchets to hard problems to be solved. Here are a couple of
new twists to the classical mechanics: a sphere falling in the transverse winds and colliding with a branch. These
results show usefulness of conceptual experiments by use of the spheres.
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1. Introduction
There is an academic urban legend often referred to as

“A Spherical Horse (Davis, 1998, for example).” The
story is about a horse owner managing to make his horse
win at the coming race. He hires three men, a chemist,
a biologist, and a physicist, and orders them to improve
the situation. Months later on the day before the race,
the owner assembles the three men and asks the reme-
dies. The chemist and the biologist explain their inven-
tions. The physicist, however, begins his lecture by stat-
ing “Let us consider a spherical horse in simple harmonic
motion . . . ”

However, in the course of solving a very hard problem,
we often have recourse to changing the original problem
into a general one or a special one, which would be solved
more easily. This kind of tactics often leads us to the final
solution of the original problem (Pólya, 2004). In such a
detour toy models play important roles. The spheres are
the ultimate 3D toy models to break through the curse of
dimensionality. We shall show how spherical horses really
work.

2. A Sphere Falling in the Transverse Winds
2.1 Motivation

Field observations reveal that the average flight range of
the samaras is significantly larger than the conventional es-
timate: D > HwT /U , where D, H, wT , and U designate
the flight range, the height of releasing the samaras, the ter-
minal velocity of the samaras, and the speed of the trans-
verse wind, respectively; the excess is up to 10–20% of the
conventional estimate. The most important point that the
former works have neglected is the existence of the trans-
verse winds. The winds release the samaras from their par-
ent trees. We have carried out experiments in the transverse
winds; we find that high lift acts on the samaras and that
they fly farther than the conventional estimate (Ichikawa et
al., 2008). To annotate the results we want to consider a
spherical samara.

2.2 Analytic results and discussion
We treat a falling body as a sphere of mass m and dis-

regard any rotating motions. We assume moderate to high
Reynolds number flow, and hence the aerodynamic drag is
in proportion to the square of the total velocity relative to
the transverse wind.

We use the coordinate system as shown in Fig. 1: x de-
notes the horizontal axis; z-axis is taken positive downward
in the vertical plane. The wind is assumed to blow paral-
lel to the positive x axis at the velocity U . To make our
analysis concise, we assume the uniform wind. We observe
from the frame fixed to the origin and define the velocity
components u and w at the centre of gravity of the sphere.

Suppose a spherical samara starts to fall from the origin
of the coordinate system. The drag has the horizontal and
vertical components in proportion to the ratio of the respec-
tive velocity components to the total velocity. Thus we get
the equations of motion with physical dimensions:

m
du

dt
= 1

2
ρSCD(U − u)

√
(U − u)2 + w2,

and

m
dw

dt
= 1

2
ρSCDw

√
(U − u)2 + w2,

where ρ, S, and CD denote the air density, the reference
area, and the drag coefficient, respectively. The initial con-
ditions are given by u(0) = w(0) = 0.

We shall introduce the characteristic velocity and time
to obtain the legible formalism. The terminal veloc-
ity wT in free fall is the characteristic velocity given by
(2mg/ρSCD)1/2,while we define the characteristic time by
wT /g. Then we obtain the normalized and nondimension-
alized equations of motion in the following vector form:

dv
dt

= k − |v|v,

where

v = (λ − u, w)T ,
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Fig. 1. Definition of the problem: A sphere falling in the transverse winds.
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Fig. 2. Range distribution.

Fig. 3. Trajectories of spheres colliding with a circular bar.

and λ = U/wT ; in the equations above and hereafter u, w

and t are used as nondimensional quantities; the initial con-
dition is given by v(0) = λi; the vectors i and k are the
unit vectors in the horizontal and vertical directions, respec-
tively. As shown above, the basic equation is a variation of
Riccati equation in a two-dimensional vector form.

Initially dz/dx = w/u = λ−2 < λ−1, if λ > 1. Since
dz/dx = λ−1 is the conventional formula, the initial locus
comes above the straight line of the formula as shown in
Fig. 1 for λ > 1.

Thus the initial mechanism is found to be the driving
force of transporting samaras farther in case of the trans-
verse wind of U > wT .

3. A Sphere Colliding with a Circular Cylinder in
the Transverse Winds

3.1 Motivation
Wind dispersal of samaras is affected by the existence

of branches in forests. We tried examining this particular
effect by the wind-tunnel experiments using spheres for
samaras and a circular cylinder for a branch.
3.2 Experiments

The test section of our blow-down wind tunnel is 0.6 m
high, 0.6 m wide, and 1.8 m long; we model the branch by a
circular cylinder with 16 mm diameter placed transversely
0.34 m high from the floor and 1.5 m upstream from the
end of the test section; we drop plastic spheres with 15 mm
diameter through the hole on the wind tunnel ceiling where
is 0.26 m high and 0.3 m upstream from our branch; wind
velocity is fixed at U = 5.0 m/s.

The result is that our branch acts as a springboard rather
than an obstacle: the flight range without the branch is on
average 0.625 m with 0.037 m standard deviation, while
the flight range with the branch is on average 1.11 m with
0.604 m standard deviation. Figure 2 shows the histogram
of the flight range with the branch. It is apparent there are
two peaks that stand for the flight ranges with upward and
downward leaps. Figure 3 shows typical flight trajectories.
Spheres leap markedly, although the coefficient of restitu-
tion is found to be as low as 0.347.
3.3 Annotation

We observed both top and back spins of spheres, and
hence both positive and negative Magnus effects account
for the double-peak distribution in the Range histogram,
but this alone is not the entire cause of phenomena. The
circular cylinder and its wake displace flow around it and
hence trajectories of flying spheres, although quantitative
explanation is not in our hands yet.

4. Conclusion
When we come across with problems complex in situa-

tions or geometries, it is quite useful to introduce spherical
approximations to those problems. Such conceptual exper-
iments surely lead us to divergent creative thinking, which
then converges to the final solution.
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