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Abstract

The aim of this review is to re-examine some flight
techniques, used by certain birds, which are thought
to be optimal in an energy-saving sense. Static
soaring may not seem 10 provide any new topics, but
that is not true. There should be some explanations
Jor phenomena like gull's wave riding near a ship,
storm petrel's sea-anchor soaring and so on. One
important aim of this review is to introduce, for the
first time in English, Suzuki's thorough analysis of
dynamic soaring on the basis of optimal control
theory. Finally several challenges are summarized as
problems to be answered in the future.
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1. Introduction

Berthold Laufer [I] pointed out in his monograph that the desire to fly is
as old as mankind. He quotes from the Bible:

Oh that | have wings like a dove! For then would I fly away, and be at rest.

As this phrase applauds, our ancestors well realized that the bird is our
master of flight. From the dawn of aviation to Wright brothers' success we
have tried to understand how birds fly. Although several times we had strayed
into the byways of magical levitation, balloons and what not, we came back to
the royal road in the end. Leonardo da Vinci (1452-1519) studied the flight of
birds and left sketches and notes, but unfortunately his manuscripts had been
hidden until 1797. Around the turn of 19th century Sir George Cayley built
hand-launched gliders. In Cayley's paper we find his comments and sketches
related to aerodynamic forces acting on birds. He knew that, unlike birds,
mankind could fly only with fixed wings. Otto Lilienthal, the father of gliders,
studied the flight of birds thoroughly and published his findings as the definite
book on bird flight [2]. He investigated how lift and drag work, why airfoil
needs camber, and so on. The Wright brothers made most of Lilienthal's
heritage to develop their powered, manned heavier-than-air aircraft. Their
control system, the controversial patent, mimics how a bird twists its wings to
change the flight course. One hundred years have passed since the Wright
Flyer flew over Kitty Hawk; the last century may be called the age of applied
aerodynamics, and its mainstream departed from studies of bird flight.

However a line remained uncut. From 1930s to early 1960s eminent
ethologist Erich von Holst had studied animal flight by thorough and unique
experiments. After his death in 1962 major part of his work was compiled in
two volume books:; its second volume covers most of his study on animal flight
[3]. His collaboration with an aeronautical engineer is a classic in this field [4].
This paper still provides a lot of insights into zoological fluid dynamics.

After World War Il many biologists, applied mathematicians, and
engineers returned to the field of mechanics on animal locomotion. A partial
list of related works, e.g., Hertel [5], Gray [6], Pennycuick [7], Riippel [8],
Lighthill [9], Childress [10], and Vogel [11], may cover the early development
of external biofluiddynamics, which is the term coined by Sir James Lighthill.
Many conferences had also been held in this field in this era; see for example
[12], [13]). In particular Lighthill was master of the subject. His commitment in
this field resulted in many valuable papers that we can read now in the fourth
volume of the collected works compiled by Hussaini [14]. Qutcomes are
understandings on scale effects, mechanics of wing flapping, novel phenomena
like Weis-Fogh mechanism, and so forth.

In 1990s Alexander [15] and Tennekes [16] succeeded in attracting
general readers’ interest to animal flight, while Norberg [17] and Azuma [18]
summarized broad knowledge on animal flight for specialists in an
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encyclopaedic manner. It is sure that biofluiddynamics gained the firm basis as
a subject of science, and hence conferences have been held frequently, e.g.,
[19].

Let us compare descriptions on flapping flight in the reviews by Lighthill
[20] and Shyy er al. [21]. Lighthill surveys literatures up to 1990 from
theoretical points of view, and hence he picks up topics related to Rayner's
constant circulation model with vortex ring wake [22], [23]. On the other hand,
Shyy et al. describe the non-steady, inviscid and flexible lifting surface model
developed by Vest & Katz [24]. As examples of the state-of-the-art in
numerical analysis of wing flapping | may add a couple of full Navier-Stokes
simulations such as Smith [25] and Sun & Tang [26] that are applicable to
flows with rather low Reynolds number up to the order of 10°. The CFD
lessons seem to me a new type of experimental tools. Theodorsen functions
and Rayner's vortex-ring model, that is analytic models, may be surreal but
reveal skeletal structures of physics behind the concerned phenomena. On the
other hand, as summarized in Shyy er a/. [21], the contemporary trend in this
field is making for application to artefacts rather than understanding of Mother
Nature, then CFD is indeed a powerful tool to assist engineers in designing
wing-flapping machines.

Apart from application-oriented approach, other lines of investigation
exist. For example we can list several literatures related to optimization of
wing flapping: [27]-[30]; the authors of these papers look for lift distribution
that maximizes aerodynamic thrust subject to the total lift constraint. The
present review follows this line, and I shall consider bird flight by using the
keyword, 'optimize.! Evolution itself is a series of stochastic and neutral
phenomena, but survivors have fitted themselves to the environment to win the
competition with rivals. Therefore | expect the paradigm shown in Fig.1 taken
from [31]. Even in the field of evolutionary biotechnology engineering or
rational design goes from top down to the targeted solution, while evolution is
a bottom-up dynamical system leading to optimal function. I believe that the
bird optimizes flight technique to lead advantageous life in severe
environments.

What [ try is to revisit some thought-to-be-solved problems and to re-
examine physics behind the phenomena in yet another context. In some
subsections | left several peculiar techniques as open questions. In Section 2
we show that control theory is a powerful tool to analyze special flight
techniques used by birds. I treat the bird as a mass particle and discuss
problems by use of equation of motion of the bird. Section 3 is used to
summarize the revisits and make some comments on future challenges.

As for an extensive list of related literatures, | recommend readers to visit
Rayner's Web site [32] where thorough lists are open to public and updated
frequently.
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Figure 1. Design paradigm. redrawn from [31]

2 Soaring techniques
Throughout this section we use the conventional Cartesian coordinate: z. y

and z axes correspond to the direction of flight, the horizontal and transverse

axis to ., and the altitude, respectively.

2.1 Some special techniques in static soaring

There are several energy-saving techniques relatively less known and less
trivial amongst static soaring.

Gray [6] wonders

why gulls soar on the leeward side of a steamer.

He conjectured three possibilities: use of thermal up-currents; use of
obstructional currents; use of still air moving with the ship. | support the
second possibility: gulls enjoy riding wavy air developed on the leeward side
of the ship; they may be able to detect the invisible wave.

Figure 2 shows the schematic diagram for seagull's wave riding. We shall
apply the mechanism of the surfing [33] to the wave-riding gull problem. Let
us start our analysis from the following assumptions: (i) a wavy slope is
moving with a ship at the constant speed J; (ii) the wavy slope does not

change its surface shape designated by the smooth function M’ («); (iii) the
coordinate system is fixed to the moving wavy slope; (iv) a gull of mass m is
gliding along the wavy slope at the relative speed v in the tangent. The single

and double primes designate the first and second derivatives with respect to z.

The equations of motion in the tangent and the normal are respectively given
by
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where p, S, Cp, g, and C; denote the air density, the wing area, drag coefficient,
the gravity acceleration, and lift coefficient, respectively.

L

0 x

Figure 2. Schematic diagram for gull’s wave riding near a moving ship. A ship is
shown from its stern. A gull is soaring in the wave developed leeward the ship moving
at the velocity V.

To stay with a wave the gull only needs to adjust the lift to fulfil Eq. (2). If
v =0 in (1), we obtain

— pv*SCp\ /1 + (W})?
f -

- 2mg
< 0, 3)

which constitutes a necessary condition for the existence of the steady state.
Therefore wave riding is possible only on the front side of the wave. The

equilibrium is stable if 0v/0x <0. Differentiating (1) with respect to =, one
obtains

ov _ @/H)SCD QW}I

oz~ ‘Oz m {1+(W;)2}3/2}
< 0.
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If 00/ 8xr<0.then Av./dr is less than a constant value; suppose
v(r+dz) >v(x): if the bird is disturbed to move forward, it is transferred

from the former steady state to another faster steady state there; this implies
v(x+dr) ~v(x) to assure the stability of the steady state, and hence

Ov " éx < 0. Therefore the stability condition above yields
W;’ S - Q_qi pwSCp
{1+ (Wp)2)32 or myg
> 0. (4)

That is, the equilibrium is stable only on the concave surface of the wave.
If the gull keeps the same position relative to the ship on the moving wave
front, the following relation must hold:

v = V‘/l + (W;)2 (5)

Using the first line of Eq. (3), one can eliminate pSC)/mg from the first line of
Eq. (4); substituting Eq. (5) into that relation, some algebra leads us to

1
\2 =
(Wf) <21

1
—5 < Wi <o (6)

This range corresponds to possible glide angles, and the lower bound is around
-35°

Therefore gulls can soar stably on a lower part of the front side of a wave
to go with a ship for a long distance.
Ships are also a source of things to eat for scavenging birds.
We shall move onto the next topic:

Storm petrels are known to walk on the sea surface by bringing
aerodynamic and hydrodynamic forces under control.
This technique is called sea-anchor soaring (see for example [15]). Withers
[34] analyzes the film and calculates the power requirement of sea-anchor
soaring. Mechanically detailed analysis shows there are lower bounds about
wind speeds for stable soaring [35]. Figure 3 shows the schema of sea-anchor
soaring: the storm petrel of mass m stays aloft against the wind of speed {/ and
walking on the water at speed J”. The vertical forces must be in equilibrium:
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Welibed Feet

Figure 3. Schematic diagram for sea-anchor soaring, redrawn from [35]. A bird is
soaring lecward in horizontal wind with its feet in the sea. All the forces acting on the
bird are shown. Note the direction of U and V.

1
ip(U - V)28C, = myg. (7)

To fly under this condition, the bird needs the wind faster than that required at
the maximum lift coefficient C,, .. Let this lower bound of the wind speed be
Uy, i.e. stall speed.

The horizontal forces are also in equilibrium:

2

1 2 % 1 2
§p(U —-V):s (C’D‘J + eﬂ/R) = *Q‘PwAV Ck, (8)

where Cp,, e, R,pw, A, and Cx denote zero-lift drag coefficient, the wing
efficiency, the aspect ratio of the wing, the water density, the web area, and
water resistance coefticient, respectively.

First we shall look for {J; in case of € = (', ; solving (7) with respect to
V', we substitute it into (8) and then solve that with repect to (U

B 2mg 2myg C?
U=\ rse, +JprcRch.x (C"”em'

max

We can discuss the equilibrium in the following manner: eliminating ('; from
(8) by use of (7), we have
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ao(U = V) + a1 (U= V)2 =pV2 (9)

where ay = pSCp, /2. ay = 2m*¢*/pSe w Rand b = PACH 2.

Given U, we solve Eq. (9) with respect to V. Suppose we plot each side of
Eq. (9) against }” the left-hand side diverges sharply at I"'= {/, whilst the right-
hand side is a parabola; and hence note that the equilibrium exists within the
range of I” € (0, ). In this range there are three possibilities: (9) has two, one
or no roots. The existence of the equilibrium is assured if the wind speed is
faster than that in case of one root. We define U, as the wind speed that
gives the single root to (9). When the curve on the left-hand side of (9) has
only one point in common with the curve on the right-hand side of (9), the
slope is also shared there. Therefore we take the first derivative of (9) with
respect to 1

—2ag(U — V) + 20, (U = V)73 = 2bV. (10)

Let us solve (9) and (10) with respect to }” and (/. After some algebra, we
obtain

1/4
a1

2b(b — ao) (b~ 4ag + \/b(8ag + b)) (3 — \/b(8ag + )’

If U, < U, there are two equilibria. The equilibrium at smaller V is stable,
whilst the other is unstable. We shall discuss stability below.

According to Withers' data [34], Wilson's storm petrel Oceanites
oceanicus has moderate wing area relative to their weight but large web area: S

=0.017[m’], mg/S = 19.3[N/m’], and 4 = 0.0008[m"]. Using these data and the

typical values for coefficients, we estimate the lower bounds of wind speed for
Wilson's storm petrel: U, = 1.89[m/s]; Uy = 4.79[m/s]. Since U,> U, the storm
petrel can always make most of sea-anchor soaring in the wind strong
enoughto support its weight by the aerodynamic lift. Figure 4 summarizes the
argument on the stability of the equilibrium: the upper inset shows water
resistance and aerodynamic drag curves, labelled R and D, respectively; the
schema below shows the balance between resistance and drag. Increasing I,
the bird experiences less aerodynamic drag and more water resistance. Hence
the bird is held back to the equilibrium. Decreasing ¥, the bird experiences
more aerodynamic drag and less water resistance. Hence the bird is held back
to the equilibrium. Therefore the equilibrium is stable. When the wind blows at
{7 = Uy, the petrel's velocity to the water I is as slow as 0.256 [m/s]. It is easy
for the petrel to walk back to its findings streaming away at such a slow speed.

Ue = 4(b - (lo)
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Figure 4. Stability of sea-anchor soaring, redrawn from [35]. Lower portion of this
figure shows the cquilibrium (in the middle of the upper inset) and two disturbed states.
In the figure D and R designate aerodynamic drag and hydrodynamic resistance,
respectively. A possible relation between resistance and drag is shown on top of this
figure.

Some insects are known to become half airborne on water surface [36]. It is
apparent that these insects adopt the same technique as sea-anchor soaring. To
summarize

In the wind blowing faster than the storm petrel's stall speed,

hydrodynamic and aerodynamic forces always become in equilibrium to

support the small webbed bird aloft at very small speed to the water.

In the end of this subsection I shall compile some peculiar techniques that
are not yet annotated by theoreticians.

As studied by Withers & Timko [37], skimmers make most of the ground
effect to feed with their scissors-like bills. They feed themselves on the wing
with the under mandible skimming the water. Skimmers can flap their wings
powerfully. During skimming they enjoy enhancement of lift and reduction of
induced drag at the same time owing to the ground effect, so they flap their
wings intermittently. Withers & Timko concluded the hydrodynamic drag
acting on the mandible is negligible, but skimmer's feet sometimes dab the
water. Therefore it is necessary to consider both hydrodynamics and
aerodynamics of the skimming flight.

Diving birds are heavy and hence they rely on the ground effect to some
extent, because that relaxes the power requirement as discussed in detail by
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Rayner in [38]. Other interesting observation is diving petrel's underwater
flight [39]: during foraging these birds glide in the water near the surface. To
do so the lift must act downward. In this situation the ground effect in the
water would repel the birds from the sea surface.

Prions are birds having specialized bills with comb-like lamellae in the
upper mandible with which they filter-feed copepods. Their feeding technique
is something special [40]:

some use a peculiar technique called "hydroplaning", in which the bird

rests lightly on the water and uses its feet to skim swiftly over the surface,

with its wings outstretched, and the bill or even the whole head
submerged.

2.2 Dynamic soaring

Mutton bird is one of Maori's delicacies. Its scientific name is Puffinus
griseus, that is Sooty shearwater. In the 19th century Nature article the
correspondent with the initials R.A. [41] calls Diomedea melanophrys, or
Brown-browed mollymawk, as mutton bird. The size of this mollymawk is
somewhere in between Wandering albatross Diomedea exulans and Sooty
shearwater. This correspondent describes observations of sailing flight, which
is now known as dynamic soaring. Later Rayleigh [42] correctly suggests that
soaring would be possible in the non-uniform wind. In 1920s Idrac, supported
by the French government, had studied dynamic soaring experimentally in the
fields (see for example [43] and the comment [44]). This study provides
detailed data that support Reyleigh's suggestion:

albatrosses soar up windward and glide down leeward in the wind shear.

ldrac [45] reported two patterns of flight path in dynamic soaring: one is a
figure of S, and another is a figure of a. Even Prandtl [46] describes his
observation on the dynamic soaring of sea birds on the occasion of his ship trip
from Yokohama to Honolulu and wondered how it is possible. Jameson [47]
records the flight pattern of the albatross that had followed his battle cruiser for
tens of hours without flapping. Cone [48] explains dynamic soaring by
dividing into four phases and using two-dimensional argument. Vrana [49] is
the first to use the variational principle to solve the three-dimensional flight of
dynamic soaring but obtained the unrealistic and almost two-dimensional
solution. This misleading result seems to arise from the assumption that the
total energy relative to the wind, defined later in this subsection, must be
constant. Wood {50] conducted the numerical analysis on the two-dimensional
model by trial and error. Wilson [51] points out the possibility that albatrosses
make most of wave draft developing along the ocean wave to take off. Sherwin
[52] tried to apply dynamic soaring to manned aircraft but the discussion there
is the use of the non-steady wind, ie., gust soaring defined later in this
subsection.
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It is Suzuki [53]-[56] that conducted the most thorough theoretical study
on dynamic soaring. Here | will introduce his theory in English for the first
time.

Albatross's position and velocity to the ground are respectively denoted by
r = (z. y. z)and u, while the wind shear is, without a loss of generality, given
by w=(,0,0).

Let us get started from the basics of soaring in the wind. Firstly we shall
introduce the timederivative observed by a soaring bird along with the arc s of
its flight-path:

D a
ﬁz = —8'E+(UV)
= o M

The instantaneous change in the kinetic energy of the bird is given by

D{u—w)
(u—w)- D
If this is large enough to compensate for the dissipation due to aerodynamic
drag and the loss of gravity-potential energy, it is possible for the bird to soar
continuously without flapping its wings. If among the terms of the time-
derivative of the kinetic energy above

D(w)
—u- 22 5
u-—= >0

then the wind supplies energy to the bird. There are two possibilities. If

—u— >0,
u6t>

then the gust, the instantaneous change in the wind, becomes the source of the
energy; we call the soaring technique using this effect gust soaring.
If

—u]u[%—V: > 0,

then the wind shear becomes the source of energy; we call the soaring
technique using the effect due to the wind shear dynamic soaring. Over the
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ocean the wind shear has a nature, A/ > 0; therefore in a two-dimensional
case, the criterion above affords a simple strategy:

Soar up windward. Glide down leeward.
This is just what Reyleigh [42] suggests and Idrac observed.

Let us move onto three dimensions. From now on, we concentrate to
consider dynamic soaring alone, and hence we assume

ow 0
ot
to eliminate the effect due to gust soaring. We also assume without a loss of
generality

W =Wz

Figure 5 shows the coordinate systems. We shall introduce two frames to
describe the motion of a bird flying in a sheared wind. The one is the frame r
fixed to the ground. The other is the frame R = (X, ¥, Z) fixed to the bird with
its origin at the centre of gravity of the bird. The latter frame, which describes

z
A

Z
Figure §. Coordinate systems for dynamic soaring. The origins arc E for the frame r and
O for the frame R. The ground frame r is successively rotated around the axes three times:

rotation of r around z-axis 180 degrees to obtain the upside down frame ry: rotation of 1
around z-axis by the angle y to obtain the frame ry: rotation of ry around y,-axis by the

angle ¢ to obtain the frame r,: rotation of r; around z,-axis by the angle [ to obtain the
frame fixed to the bird R. Detailed deseription is summarized in Appendix A.
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the attitude of the bird, is called an attitude coordinate set. The frame R is
being drifted away from the origin of r. The transformation matrix T of vectors
in the frame r to those in R is given by

cos xsinfsin 8 ~sin ycos S —sin ysinfsin § — cosycos § — cosfsinf
cosxsinfcos B +sinxsinf —sinxsinfcosB+ cosxsin S —cosfcosf

cos x cos § —sin x cos § sin 8
See Fig. 5 for the Euler angles x. & 5, and Appendix A for derivation of this

matrix. Then, in terms of the bird velocity v relative to R, the bird velocity
relative to the ground is written as

u:T_l-V-f-W. (1])

In the frame fixed to the ground, the equation of motion of a bird of mass
m is given by

m u f; +

—_— = m .

Dt T g; (12)
where f; denotes the aerodynamic force and g = (0, 0, -¢) is the gravity force.

Since the matrix T merely transforms components of vectors in frame r to
those in frame R, the following is trivial

Du D
"Dr “Dit ™
Hence in frame R, Eq. (12) can be rewritten as

D

Here, f=T - f; = (=D, 0, —L), where the components D and L denote drag and
lift, respectively.
The aerodynamic forces are written in the conventional form as

1 C?
D= ~plv[? L
2p[v| S (CD" + CW/R) ’

L= %pIVFSCL.
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We shall define s(7), the path relative to the wind, by
3
t)= [ T v({tdt.
s(t) = [ T vt)
Then r(¢), the path observed in the ground frame, is given by
¢
r(t) = s(t) + / w(t')dr'.

0

Let us consider

Eq(t)

fil

N N

1
miu(®)f? ~ 5mlu(0)? + mgz,

the margin of the total energy between the present and initial conditions
observed in the ground frame, where z denotes the difference between the
initial and present altitudes.

Taking the inner product of (12) with u, we then integrate it with respect to
t with the aid of (11). The result is

t D ¢ t t
m/o u-D—;dt':fo (T‘l-f)-(T‘l-v)dt’+/;(T“‘~f)-wdt’+m/0 g-udt. (14)

The left-hand side of (14) is equal to
1T, 1 )
Smluft = smlu(O)F,

which is the margin of the kinetic energy between the present and initial
conditions.

The following relation is trivial because of the nature of the orthogonal
transformation matrix T.

¢ -1 -1 ! t !
/O(T ) (T7 - v)dt =/Df-vdt. (15)

Therefore the first term on the right-hand side of (14) corresponds to the loss
of energy due to the aerodynamic drag.

The second term on the right-hand side of (14) can be rewritten by use of
(12) as
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¢ t / Du
T—l . . ! — ( =z ) . ’
/0 ( f) - wdt / th mg | - wdt
ey !
m/(;w Dt'dt’ (16)

because w L g. The third term on the right-hand side of (14) is equal to —mgz.
In all the right-hand side of (14) is rewritten in the following form:

/f vdt’+m/ W Bt—’dt’ mgz.

Therefore one reaches that

1

Eolt) = smlu(®) — Zmlu() +moz

/f vdt+m/w ﬁdt (17

The first term on the right-hand side in the last expression (17) corresponds to
the energy loss due to the aerodynamic drag. The second term denotes the
energy brought by the wind, but its meaning is ambiguous. This term contains
u, which involves w, so the cross term of w or the wind-ground interaction is
involved. Therefore this term does not represent the pure energy gain from the
wind.

Suzuki [53], [56] introduced a more sophisticated energy index,

1l

N =

MV — Smiv(0)?

E4(t) 3

+ mgz,

which he called the margin of the total energy relative to the wind.
Consider the work due to the bird motion relative to the wind, and one
reaches that

m/ot(u—w) ﬁdt = m/OL(T'l-v)-—g—;dt'
= m/ot(T_l-v) ];,(Tl v+w)dt
= gmlvP = gmlvOF +m [ (1) Dy,

This leads us to
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1 1
o) = Smiv()P — omiv(O)f + moz
t t Dw
— . !/ -1, Ay
= [fovat —m [ (T V). Zhar. .

The first term on the right-hand side in the last expression (18) is again the
energy loss due to the aerodynamic drag, while the second term is an exact
expression of the energy extracted from the wind.

The formalism for the optimal dynamic soaring is to maximize

t t
EA(tf):/Off'th—'ﬂl/oj(T—l'V)"I)ldt,

Dt (19)

where #,denotes the free terminal time, subject to the equation of motion (12)
and the inequality constraint, 0 < Cy(#) <

‘‘‘‘‘‘‘

and 2y, < A¢) to avoid dive
into the sea.
The state variables are the heading angle x(¢), the pitch angle 1), the

flight speed |v(7)|, and the three components of the position vector, 2(f), ¥(1),

and 2(7), while the control variables are the roll angle (Ar) and the lift
coefficient C, (7).
Initial conditions upon all the variables are given at 2(0) = 2., while the

terminal conditions are free except given x(f), &1;) =0, and 2(#;) = 2.

The important thing is the introduction of £.(r), not £(1), because birds
are in the wind not on the ground. Vrana assumed £(#) to be constant. That is
why his solution seems unrealistic.

Suzuki [53] solves the entire problem posed above upon many different
initial conditions by the variational principle and numerical integration and
finds many flight paths pretty similar to the field observations. He uses data of
Wandering albatross: m = 9.0[kg], S = 0.5[m’], .R= 18; the profile of the

sheared wind is given by a power law as
R z 1/6
W(z) = —6.9 (Ia) ,

that is, the wind speed at the reference height z = 10[m] is —6.9[mv/s];

C[)() = 0008
Figure 6 shows S-type flight pattern reproduced as a solution for £4(#),
while Fig.7 shows a-type flight pattern of a solution; these constitute the



Introduction to some optimal techniques in bird soaring 233
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A

— z fm] sz]

30 W) 301
—
x[m] 30 o' 3 % yml'o 3 A - T

Figure 6. S-type flight path: the optimal solution to (19) for a Wandering albatross.
redrawn from [53]: m = 9.0 [kg]. S = 0.5[m’]. Cj, = 0.008; important conditions

given are x0) = x (7)) = /2. 40) = A1, = 0, and 20) = (1= 2y

optimal solutions with the identical initial and terminal conditions, but S-type
is the global optimum; these are very similar to those observed by Idrac in the
ocean. There are lots of different flight patterns in between these two; the
optimum solutions transit from a-type to S-type flight patterns smoothly

depending on the combination of x(0) and x(#), the direction to the wind.

One of the most interesting findings is that the global optimum of £,(1)) is
almost identical to the local optimum defined by the problem to maximize

dE, dE4
dz dt

subject to (12). The bird cannot know a priori how to maximize the total
energy gain in one cycle of flight. What the bird can do at best is trying to
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Figure 7. a-type flight path: the solution to (19) for a Wandering albatross, redrawn
from [S3]: m=9.0[kg], S = 0.5[m?], Cp, = 0.008, important conditions given arc y(0)

= x(t) = 72, Q0) = &) = 0, and A0) = 2 (£) = Zn-

maximize the energy gain at every instance: that is the local optimization
shown above.

Suzuki treats a bird as a particle, so it would be necessary to extend the
theory using a rigid body model at least for more understanding and applying
to artefacts. Nottebaum & Goebel [57] study the applicability of dynamic
soaring to the flight technique for gliders, and the author would like to believe
in their prospect: in the near future dynamic soaring will become available for
manned aircraft.

3 Concluding remarks

The present review was a quick glimpse at some less known topics related
to optimal techniques in bird flight. Bird flight keeps on providing the wide
variety of riddles to be solved in the future.
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One of the keys is feathers. Feathers play many roles: how primaries can
generate so much lift and thrust, how coverts prevent separation, the role of
wing tip slots is still an open question, asymmetry of vanes also needs
thorough examination, etc. All these things are not yet well understood.

We should also pay attention to the linkage between mechanics and
physiology. This is the field where external and internal biofluiddynamics
meet together.

Yet another line of new study may go to ecology. Diffusion process is
closely related to flock dynamics of birds [58], [59]. It would be interesting to
look for a bridge from heuristics of boids [60], [61] to ecological diffusion
problems; the former is a bottom-up approach, while the latter is a top-down
approach. In the ocean, foraging flights of sea birds provide ecological
diffusion problem and are strongly linked to meteorological pattern formation.
Birds of passage are also the objects of this line of study.

Novel devices and techniques make field observation more quantitative
and accurate. Hence experiments reveal the new facts that will become
challenges for theoreticians to explain why and how. We will learn a lot of
lessons from bird flight.

I would like to thank Susumu Kobayashi for his valuable comments on my
first draft.

Appendix A. Transformation from the frame fixed to
the ground to the frame fixed to the bird

The frame fixed to the ground is expressed by r = (x,,2). The frame fixed to
the bird is expressed by R= (X}, 7).

First we rotate r around z-axis 180 degrees to obtain the upside down
frame ry:

I‘OZFO'I‘,

1 0 0
Fe=|0 -1 0 |.
0 0 -1

Now we shall describe the three processes of talking the Euler angles. We

where

rotate ry around z-axis by the angle y to obtain the frame r;:

r; = Fy 1y,
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where
cosy siny O

Fi=| —sinx cosx 0
0 0 1

Then we rotate r; around y;-axis by the angle fto obtain the frame r,:
rz =Fz-ry,
where
cosf 0 —sinf

Fs; = 0 1 0
sinf 0 cosf

Lastly we rotate r, around z;-axis by the angle #to obtain the frame R:

R =Fj3 -y,
where

1 0 0
Fs=| 0 cosf sing
0 —sinf cospf

Therefore the matrix T transforming from r to R is given by

T=F3-F2-Fy-Fy,

or
cos x cos B - sin x cos 8 sin 8
T =1 cosysinfsinf —sinycosS —sinysinfsinf —cosxcos3 -—cosfsinf |.
cos xsinfcos B +sinysin g —sinxsinfcos B+ cosxsinf — cosfcos B

We derive the relation between the angular velocity vector {2 in the frame

R and the angular velocities of the Euler angles 7.6 and B in the following

manncr.

Q=F3-F2-F1 w1 +F3 -Fy-wy+Fs-ws,
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where w; = (0.0, 7).w, =(0,6,0).and w, = (£.0.0). Hence we obtain
Q=T, w,
where

1 0 —sinf
T,=| 0 cosg cosfsing |,
0 —sinf cosfcosp

and w=($.0.7).

References
1. lLaufer. B. 1928. The Prehistory of Aviation. Field Museum of Natural History,
Chicago.

2. Lilienthal. O.. 1889. Der Vogelflug als Grundlage der Fliegekunst. R. Gaertners
Verlagsbuchhandlung. Berlin.

3. von Holst. E., 1970. Zur Verhaltensphysiologie bei Tieren und Menschen:
Gesammelte Abhandiungen. Band II. R. Piper & Co. verlag, Miinchen.

4. von Holst. E. & Kiichemann, D., 1941. Biologische und aerodynamische Problem
des Ticrfluges. Naturwiss, 24/25, 348-362.

5. Hertel. H.. 1966. Structure-Form-Movement. Reinhold, New York.

6. Gray. J.. 1968. Animal Locomotion. Weidenfeld and Nicolson, London.

7. Pennycuick. C. J., 1972, Animal Flight. Edward Arnold. London.

8. Riippell. G.. 1975. Bird Flight. Van Nostrand Reinhold. Scarborough.

. Lighthill. J.. 1975. Mathematical Biofluiddynamics. SIAM. Philadelphia.

10. Childress. S.. 1981. Mechanics of swimming and flying. Cambridge U.P.,
Cambridge.

1. Vogel. S.. 1981. Life in moving fluids. Princeton U.P.. Princeton.

12, Wu. T.Y.-T., Brokaw, C.J. & Brennen, C. (Eds.), 1975. Swimming and Flying in
Nature, Vol.2. Plenum Press. New York.

13. Pedley, T. J. (Ed.). 1977. Scale Effects in Animal Locomotion. Academic Press.
New York.

14. Hussaini. M. Y. (Ed.). 1997. Collected Papers of Sir James Lighthill. Vol.4.
Oxford U.P., New York.

15. Alexander. R.M., 1990. Exploring Biomechanics. W. H. Freeman & Co.. New
York.

16. Tennekes. H.. 1996. The Simple Science of Flight: from insect to jumbo jets. MIT
Press. Cambridge.

17. Norberg, U. K., 1990. Vertebrate Flight: Mechanics. Physiology. Morphology.,
Ecology and Evolution. Springer verlag, Berlin.

18. Azuma, A.. 1992. The Biokinetics of Flying and Swimming. Springer verlag.
Tokyo.



238

Takeshi Sugimoto

20.
21.

22,
23.
24.
25.
26.

27.
28.

29.
30.

31.

32.
33.
34.

35.

38.
39.
40.
41.

. Rayleigh, L., 1883. The soaring of birds. Nature. 27, 534-535.
43.

. Ellington, C.P. & Pedley. T. J. (Eds.), 1995. Biological Fluid Dynamics. The

Company of Biologists Ltd, Cambridge.

Lighthill, J., 1993. Biofluiddynamics: A Survey. Contemp. Math. 141, 1-32.

Shyy, W.. Berg, M. & Ljunggvist, D., 1999. Flapping and flexible wings for
biological and micro air vehicles. Prog. Aerospace Sci. 35, 455-505.

Rayner, J. M. V., 1979. A vortex theory of animal flight. Part 1. The vortex wake
of a hovering animal. J. Fluid Mech. 91, 697-730.

Rayner, J. M. V., 1979. A vortex theory of animal flight. Part 2. The forward flight
of birds. J. Fluid Mech. 91, 731-763.

Vest, M. S. & Katz, J., 1996. Unsteady Aerodynamic Model of Flapping Wings.
AIAA J. 34, 1435-1440.

Smith, M. J. C., 1996. Simulating Moth Wing Aerodynamics: Toward the
Development of Flapping Wing Technology. AIAA 1. 34, 1348-1355.

Sun, M. & Tang, J., 2002. Unsteady acrodynamic force generation by a model fruit
fly wing in flapping motion. J. Exp. Biol. 205, 55-70

Jones, R. T., 1980. Wing flapping with minimum energy. Aeronaut. J. 84, 214-217.
Sugimoto, T., 1992. Optimum Design of Wings for Flapping. Trans. Jpn Soc.
Aeronaut. & Space Sci. 35, 250-253.

Hall, K. C. & Hall, S. R., 1996. Minimum induced power requirements for
flapping flight. J. Fluid Mech. 323, 285-315.

Hall, K. C. & Pigott, S. A. & Hall, S. R, 1998. Power Requirements for Large-
Amplitude Flapping Flight. J. Aircraft. 35, 352-361.

Crutchfield, J.P. & Schuster, P. (Eds.), 2003. Evolutionary Dynamics: Exploring
the Interplay of Selection, Accident, Neutrality, and Function. Oxford U.P., New
York

Rayner, J. M. V., 2002, Vertebrate Flight: A bibliography. Downloadable from his
URL at http://www .biology.leeds.ac.uk/staff/jmvr/flight/publs.htm.

Sugimoto, T., 1998. How to Ride a Wave: Mechanics of Surfing. SIAM Review.
40, 341-343.

Withers, P. C., 1979. Aerodynamics and hydrodynamics of the "hovering" flight of
Wilson's storm petrel. J. Exp. Biol. 80. 83-91.

Sugimoto, T., 1998. A Theoretical Analysis of Sea-Anchor Soaring. J. Theor. Biol.
192, 393-402.

Kramer, M. G. & Marden, J. H., 1997. Almost airborne. Nature. 385, 403-404.
Withers, P. C. & Timko, P. L., 1977. The Significance of ground effect to the
acrodynamic cost of flight and encrgetics of the black skimmer (Rhyncops nigra).
J. Exp. Biol. 70. 13-26.

Rayner, J. M. V., 1991. On the aerodynamics of animal flight in ground effect.
Phil. Trans. Roy. Soc. Lond. B 334, 119-128.

Ryan, P. G. & Nel, D. C., 1999. Foraging behavior of diving petrels Pelecanoides.
Emu. 99, 72-74.

del Hoyo, J., Elliott, A. & Sargatal, J. (Eds.). 1992. Handbook of the Birds of the
World. Vol.!: Ostrich to Ducks. Lynx Edicions. Barcelona.

R. A., 1876. The sailing flight of birds. Nature. 13, 324-325,

Idrac, M.P., 1925. Experimental study of the "Soaring" of albatross. Nature. 115,
532.



[ntroduction to some optimal techniques in bird soaring 239

44,

45.
46.

47.
48.

49.
50.
51.
52.
53.
54.

55.

56.

57.

58.

59.

60.

61.

Walkden. S. L.. 1926. Experimental study of the "Soaring" of albatross. Nature.
116, 132-134.

Idrac, M.P.. 1926. Le vol des Albatros. Rev. Fr. d'Om. 18, 38-46.

Prandtl. L., 1930. Beobachtungeniiber dynamischen Segelflug. Z. Flugtechnik &
Motorluftschiftahrt. 21. 116.

Jameson. W.. 1958. The wandering albatross. Lupart Hart-Davies. London.

Cone. C. D.. 1964. A mathematical analysis of the dynamic soaring flight of the
albatross with ecological interpretations. Spec. Sci. Rept. Va. Inst. Mar. Sci. 50
Vrana. J. C.. 1968. Dynamic soaring. C.A.S.I. Trans. 1, 94-105.

Wood. C. J.. 1973. The flight of albatross. Ibis. 115, 244-256.

Wilson. J. A.. 1975. Sweeping flight and soaring by albatrosses. Nature. 257, 307-
308.

Sherwin, K.. 1981. The application of dynamic soaring to man powered flight.
Aeronaut. J. 150-153.

Suzuki. K.. 1983. Fundamental study on dynamic soaring. Ph.D. Dissertation (in
Japanese). University of Tokyo. Tokyo.

Suzuki. K.. 1984. Dynamic Soaring Viewed from Similarity Law. Trans. Jpn Soc.
Mech. Eng. (in Japanese with English abstract) 457. 1736-1739.

Suzuki, K., 1984. Albatross' Flight Technique of Cutting a Groove in the Seca
Water with One Wing Tip. Trans. Jpn Soc. Mech. Eng. (in Japanese with English
abstract) 459. 2713-2716.

Suzuki. K.. 1989. Energy Index for Flight in General Conditions of Wind. Trans.
Jpn Soc. Mech. Eng. (in Japanese with English abstract) 515, 1651-1655.
Nottebaum. T. & Goebel, O.. 1989. Simulation optimaler Flugbahnen des
dynamischen Segelflugs und Auslegung eines Modellflugzeugs. Z. Flugwiss.
Weltraumforsch. 13, 48-56.

Parrish. J. K. & Hammer. W. M. (Eds.). 1997. Animal Groups in Three
Dimensions. Cambridge U.P.. Cambridge.

Okubo. A. & Levin. S. A. (Eds.). 2001. Diffusion and Lcological Problems.
Springer verlag, New York.

Reynolds, C. W., 1987. Flocks. Herds. and Schools: A Distributed Behavioral
Model. Comp. Graphics. 21, 25-34.

Flake, B. W.. 1999. The Computational Beauty of Nature. MIT Press, Cambridge.



