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Abstract 

Synergetic Inter-Representation Network is described by n-dimensional 
ordinary differential equations with cubic nonlinearity. The novel find is 
the fact that the basic equation set is transformed to a set of 
n-dimensional Lotka-Volterra equations. The existence and stability of 
fixed points is shown mathematically rigorously by a series of inequality 
conditions. For the sake of self-consistency and numerical efficiency, it is 
proposed to use the n-dimensional Lotka-Volterra equations having n 
stable fixed points. 

1. Introduction 

Synergetic Inter-Representation Network (SIRN in short) is the 
paradigm for human cognitive process that is first proposed as IRN by 
Portugali and then augmented by Synergetics (see for example [1, 2]). 
Their representations cover artifacts, natural entities, behaviors and 
anything in our mind [2]. Its mathematical model is derived from the one 
for Synergetic pattern recognition [1]. The state variable vector is 
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expandable by n representations in such a manner: 

∑
=
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,vx  (1) 

where 

x : the state variable vector; 

:xv ⋅=ξ +
ii  the order parameter for the ith representation; 

:iv  the pattern vector of the ith representation; 

:+
iv  its adjoint. 

Its dynamics is described by an autonomous ordinary differential 
equation with respect to x with cubic nonlinearity: 

∑ ∑
= ≠

−ξ












ξ−λ=

n

i
ii

j
ji CBdt

d

1

2

1

2 ,xxvx  (2) 

where 

:iλ  the growth rate called the attention parameter for ith 
representation; 

B : the strength of competition among representations; 

C : the parameter constraining the growth for all the representations. 

All these parameters are positive constants. 

Taking the inner product of (2) and +
iv  with the aid of (1), we obtain 

the governing equations of the order parameters: 
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2. Transformation to Lotka-Volterra Equations 

Multiplying (3) by iξ  and substituting iη  for ,2
iξ  we obtain 
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It is a set of n-dimensional Lotka-Volterra equations, having 
quadratic nonlinearity. We should note that the new variable iη  is 
non-negative. 

3. Nature of the Fixed Points 

The fixed points are obtained by solving 

∑
=

=η−λ
n

j
jiji D

1
0  (5) 

or 
0=ηi  (6) 

for ....,,2,1 ni =  Thus, the choice is ,2n  which is equal to the total 

number of the fixed points. Let us denote ( )lk,η  as the lth fixed point 
among those having k non-zero components; l is in [ ].,1 knC  

The first is the total extinction of all the representations: 

( ) ( ) .0...,,0,01,0 T=η  

The second is a set of n single-representation points: 

( ) ( )Ti
i C 0...,,0,,0...,,0,1 λ=η  

for ....,,2,1 ni =  

In the rest of the fixed points, several representations coexist. For 
example 

( ) ( ( ) ( ) ) .0...,,0,...,, 1,1,
1

1, Tk
k

kk ηη=η  
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Each component is obtained mathematically rigorously. Summing up 
(5) for 1=i  to k, we obtain 

( ){ } ( )∑ ∑
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The equations (5) and (7) lead us to the solution set: 
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If this value is negative, such a fixed point is not feasible. 

Now, we shall show 
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for all the i under the condition of n-representations coexistence: 
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for all the i.

Let us start from the following inequality for :nk <

( ) ( )∑ ∑
=

+

=

λ
++

>λ
+−

k

j

k

j
jj CkkBkCBk

1

1

1
.1

1
1

1  (11) 

This can be shown by straightforward algebra as follows: 
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In case ,1−= nk  the last line of (12) is positive because of (10); 

hence (11) holds true; then mathematical induction leads us to the 
conclusion that (11) holds true for any k; then (9) holds true for any k 
because of (10) and (11). 

The upper bound of (9) is given by 

ijC
CB λ>λ+  (13) 

for all the i and j. 

Now, we shall check stability of the fixed points. We need to calculate 
the Jacobian of (4): 
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In case of ( ),1,0η  
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Therefore, J is positive definite and hence ( )1,0η  is an unstable node. 
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In case of ( ),,1 kη  
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Therefore, J is negative definite because of (13) and hence ( )k,1η  for 
all the k are stable nodes. 

In case of ( ),1,kη  
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This Jacobian assumes the following form: 
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where kUA  covers the components with 1=i  to k and 1=j  to k, while 

kLA  covers the components with 1+= ki  to n and 1+= kj  to n. Then 
the determinant of the Jacobian becomes as follows: 

( ( ) ) .1,
kLkU

k AAJ =η  

The lower part kLA  is negative definite because this diagonal matrix 
has all negative components. 

To check definiteness of ,kUA  we shall test it by using two particular 
vectors: y has 1== ji yy  and zero for the rest; z has 1=−= ji zz  and 

zero for the rest. Then, we have 
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Therefore, kUA  is apparently indefinite. This in turn implies that 

( ( ) )1,kηJ  is also indefinite and that this Jacobian has some positive and 

some negative eigenvalues; hence ( )1,kη  is a saddle point. All such 

12 −− nn  points are found to be saddle points in the very same manner. 
In the vicinity of these saddle points, zero components will never grow 
again, while some of non-zero components will grow further. Thus, n 
representations are selected in this dynamical system and in the end only 
one survives. 

4. Conclusions 

To make most of the Lotka-Volterra formalism, we mathematically 
rigorously explore the nature of the fixed points. 

Here is our proposal. As far as the state variable x is expanded by n 
representations iv  for 1=i  to n, the total number of the stable fixed 

points should be n. In this sense, the Lotka-Volterra formalism is more 
natural than the original formalism, which has 2n stable fixed points: 
these have n positive and n negative order parameters. The original 
formalism has cubic nonlinearity, and hence numerical scheme must 
have a fine time interval to accurately integrate steep changes. On the 
other hand, the Lotka-Volterra formalism has quadratic nonlinearity: the 
total number of multiplying operations is apparently reduced; a less fine 
time interval is allowed because of less steep changes. 
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