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Abstract

Synergetic Inter-Representation Network is described by n-dimensional
ordinary differential equations with cubic nonlinearity. The novel find is
the fact that the basic equation set is transformed to a set of
n-dimensional Lotka-Volterra equations. The existence and stability of
fixed points is shown mathematically rigorously by a series of inequality
conditions. For the sake of self-consistency and numerical efficiency, it is
proposed to use the n-dimensional Lotka-Volterra equations having n
stable fixed points.

1. Introduction

Synergetic Inter-Representation Network (SIRN in short) is the
paradigm for human cognitive process that is first proposed as IRN by
Portugali and then augmented by Synergetics (see for example [1, 2]).
Their representations cover artifacts, natural entities, behaviors and
anything in our mind [2]. Its mathematical model is derived from the one

for Synergetic pattern recognition [1]. The state variable vector is
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expandable by n representations in such a manner:

X = Zn: &ivis 1)
i=1

where

X : the state variable vector;
&; = vi - x : the order parameter for the ith representation;

v; : the pattern vector of the ith representation;
v; : its adjoint.
Its dynamics is described by an autonomous ordinary differential

equation with respect to x with cubic nonlinearity:

n

d
EX:Z Xi—BZE)? &ivi—C|x|2x, 2)

i=1 Jj#1
where

A; : the growth rate called the attention parameter for ith

representation;
B : the strength of competition among representations;
C : the parameter constraining the growth for all the representations.
All these parameters are positive constants.

Taking the inner product of (2) and v; with the aid of (1), we obtain

the governing equations of the order parameters:

%ii = [M - ZDiji?Jii, 3
=1
where

D _ C i =],
Y \B+Ci=#j.
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2. Transformation to Lotka-Volterra Equations

Multiplying (3) by &; and substituting n; for F,iz, we obtain

d n
A Z[M - ZDijn]}ni- @)
=1

It is a set of n-dimensional Lotka-Volterra equations, having

quadratic nonlinearity. We should note that the new variable n; is

non-negative.
3. Nature of the Fixed Points

The fixed points are obtained by solving

n
7\'i — ZDUT]] =0 (5)
j=1
or
n; =0 (6)

for i =1, 2, ..., n. Thus, the choice is 2", which is equal to the total

number of the fixed points. Let us denote n(k’ D as the Ith fixed point

among those having k non-zero components; [ is in [1,,C}].
The first is the total extinction of all the representations:
2% = (0,0, .. 0)7.
The second is a set of n single-representation points:
a9 =0, .., 0 1;/C,0, .. 07
fori=1,2, .., n

In the rest of the fixed points, several representations coexist. For
example

B0 = ), 0, 0

n = (‘11
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Each component is obtained mathematically rigorously. Summing up

(5) for ¢ =1 to k, we obtain
k k
e-1)B+kRCY ™D =32,
=1 =1
The equations (5) and (7) lead us to the solution set:

(k1) _ 1 B+C
i {(k B+ kC 27“ }

If this value is negative, such a fixed point is not feasible.

Now, we shall show

B+C
= 1)B+kc2% > i

for all the i under the condition of n-representations coexistence:

B+C
(n—l)B+nsz > hi

for all the i.

Let us start from the following inequality for k& < n:

k+1

1 1
(k —1)B + kC ;7‘1 kBt (k+1)C ;xf'

This can be shown by straightforward algebra as follows:

k+1

1 1
(k—1)B+kCJZ_;}‘J'_kB+(k+1)c]Z_;7‘f

k

_ 1 _ 1 W' B
(k-1)B+kC EkB+(k+1)C = I kB+(k+1)C

(7

®

©

(10)

(11
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) 1 B+C Zk:k'_(k—l)B+ka
" (k-1)B+kC kB+(k+1)Cj:1 J T RB+ (R+1)C "

1 B+C &
" (k-1)B+kC {kB+(k+1)C ;ki _kk“}' (12)

In case k =n -1, the last line of (12) is positive because of (10);

hence (11) holds true; then mathematical induction leads us to the
conclusion that (11) holds true for any k; then (9) holds true for any k&
because of (10) and (11).

The upper bound of (9) is given by

B+C
C

for all the i and .

Now, we shall check stability of the fixed points. We need to calculate

the Jacobian of (4):
_ ) 0 (dn
- (o (o) "

where

61’]] dt

0 (dmj _ {2{% -(B+ C)Z;m +(B - C)m} j=1i

~9(B + C)n; j#i

In case of n(o’l),

LU
on; \ dt 0 j#i

Therefore, J is positive definite and hence n(o’l) is an unstable node.
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In case of n(l’k),

B+C ..
o (dn) {-2( : Kk—kij]—lv&k,
on; \dt A j=i=Fk
0 j#1.

(L. k)

Therefore, J is negative definite because of (13) and hence n for

all the & are stable nodes.

In case of n(k’l),

—2Cn{E-V j=iandi<k,

B+C
ai(%): 2((1@ 1)B+kaz— M- )
M —2(B+C)n§k1) j#iandi <k,
0 j#iand i > k+1.

tand i > k+1,

This Jacobian assumes the following form:

A
I [ o j

where A,y covers the components with i =1 to kand j =1 to k, while
Ay covers the components with i =k +1 ton and j =k +1 ton. Then

the determinant of the Jacobian becomes as follows:
k,1 _
| I®D) | = | Aper || Agr |-
The lower part Ay is negative definite because this diagonal matrix
has all negative components.

To check definiteness of Ay, we shall test it by using two particular
vectors: y has y; = y; =1 and zero for the rest; z has z; = —z; =1 and

zero for the rest. Then, we have

v Arpy = -2(B +20) (Y + V) <0
and

ZTAkUZ = 2B(1’]Ek’1) + T]gk’l)) > 0.
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Therefore, A,y is apparently indefinite. This in turn implies that
J(n(k’l)) is also indefinite and that this Jacobian has some positive and
some negative eigenvalues; hence n(k’l) is a saddle point. All such

2" —n —1 points are found to be saddle points in the very same manner.
In the vicinity of these saddle points, zero components will never grow
again, while some of non-zero components will grow further. Thus, n
representations are selected in this dynamical system and in the end only

one survives.
4. Conclusions

To make most of the Lotka-Volterra formalism, we mathematically
rigorously explore the nature of the fixed points.

Here is our proposal. As far as the state variable x is expanded by n

representations v; for i =1 to n, the total number of the stable fixed

points should be n. In this sense, the Lotka-Volterra formalism is more
natural than the original formalism, which has 2n stable fixed points:
these have n positive and n negative order parameters. The original
formalism has cubic nonlinearity, and hence numerical scheme must
have a fine time interval to accurately integrate steep changes. On the
other hand, the Lotka-Volterra formalism has quadratic nonlinearity: the
total number of multiplying operations is apparently reduced; a less fine

time interval is allowed because of less steep changes.
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